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Towards a giant radio array for n detection
● Low interactions rate of UHE n 
→ low flux of n - extensive air shower on Earth 

→ huge area of detection
 → cheap detectors 

→ antennas without external (particle) trigger

● Anthropic transient rate >10Hz even in « quiet » places 
→ a smart trigger is required to avoid saturation of acquisition

TREND data
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A neural network as a smart trigger

How to discriminate air shower/anthropic signals @ antenna level?
→ Use a neural network (NN)?
● NN input = a radio time trace
● NN target = 0/1 (anthropic origin/air shower origin)

On which data do train/test?
→ experimental data rather than simulations
→ data we already have, a subset of TREND data

'air shower' (1)'anthropic' (0) 3

TREND time traces – 1024* 5ns
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TREND experiment
● 50 butterfly antennas
● Single-polarized
● 50-100 MHz
● Self-triggered
● Setup in XinJiang, China
● Between 2011 and 2014

● Trigger @ antenna level if :
abs(ampi - m(amp)) > 6s(amp)
  

● Trigger @ array level if :
space-time correlations between 
5+ antenna triggers 
→ « coincidence » recorded

std mean

In this study we use a subset :
1.25e8 recorded coincidences 
9e8 antenna time traces
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TREND data labelisation

See  [arXiv:1810.03070], 2018

Before making predictions, NN must be trained on data for which label is known
→ We put labels ('anthropic'=0/'air shower'=1) on TREND radio time traces using 
TREND standard data analysis :

Offline cuts were appplied to reject :

● noisy periods
● too long antenna signals
● angle/source reconstruction : hight c², near source position, zenith>80°
● discontinuous trigger pattern at ground
● direction-time correlations between coincidences
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TREND data labelisation

● Consistency between selected experimental data & simulations 
regarding shape (N/S geomagnetic expectations) & integral of angular distribution
→ The 200 selected coincidences might be air showers with a contamination ~20%
● Contamination is high for q>70 & 160<j<240 → rejected of labelisation
 

→ 'air shower' label for the 984 traces (139 surviving coincidences)
→ 'anthropic' label for the remaining ~9e8 traces

1.25e8 coincidences recorded 
(9e8 antenna time traces)

Simulations of air showers + TREND response : 
370 air showers would have been recorded

200 coincidences selected
(1495 antenna time traces)

cuts

N

160 selected (40%)

S

cuts

6
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Convolutional Neural Network

~ Dataset ~ 
984*2 = 1968  'anthropic' traces (randomly picked)

984   'air shower' traces (w=2 to keep balance)
split = 80% training/20% test

~ Preprocessing ~
times traces shifted to a mean of 0 + scaled to a range [-1;1] 

('mean of the trace' is irrelevant feature + help training)
first layer input = FFT(time trace) (works better)

~ Layers~
convs (filters=8/16, kernel size=51, padding='same', activation='relu') + maxpoolings 

60%-dropout + L2 regul = 2e-3 to avoid overfit

~ Fit ~
optimizer = adam

loss = cross entropy
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Model summary
_________________________________________________________________
 Layer (type)                Output Shape              Param #
=================================================================
 input_1 (InputLayer)        [(None, 1024, 1)]         0
 conv1d (Conv1D)             (None, 1024, 8)           416
 max_pooling1d (MaxPooling1D)  (None, 512, 8)           0
 dropout (Dropout)           (None, 512, 8)            0
 conv1d_1 (Conv1D)           (None, 512, 16)           6544
 max_pooling1d_1 (MaxPooling 1D) (None, 256, 16)          0
 dropout_1 (Dropout)         (None, 256, 16)           0
 conv1d_2 (Conv1D)           (None, 256, 16)           13072
 flatten (Flatten)           (None, 4096)              0
 dropout_2 (Dropout)         (None, 4096)              0
 dense (Dense)               (None, 16)                65552
 dropout_3 (Dropout)         (None, 16)                0
 dense_1 (Dense)             (None, 2)                 34
=================================================================
Total params: 85,618
Trainable params: 85,618
Non-trainable params: 0



  9

After training
Accuracy = #well classified data / #data
If decision threshold = 0.5 :
accuracy = 83% on training & test sets

anthropic=0, air shower=1

Anthropic 
Air shower
Accuracy

sh
ow

er

Loss = f  to minimize, 
measures how far NN 
outputs are from labels



  10

NN inferences on all data

● Recorded coincidences with 'TREND std' (without NN) :
Anthropic 1.25e8
Air shower 370 (simulation estimation)
  

● Expected recorded coinc. with 'NN trigger' (if we chose a decision threshold = 0.6) :
Fully dep. traces Indep. traces

Anthropic 18% (22.5e6) 0.07% (87 500)
Air shower 86% (318) 91% (337)

NN is applied to each 9e8 recorded traces  
to simulate a 'NN trigger':
  

● NN trigger @ antenna level if :
NN output (probability to come from air 
shower) >  decision threshold
   

● NN trigger @ array level if :
space-time correlations between 5+ 
antenna NN triggers → recorded

Anthropic 
Air shower
Accuracy

Actual recorded coincidences with 'NN trigger' : 3e6 (2.4%)
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Recorded with NN trigger
selected 'TREND std' (200)  recorded 'NN 
trigger' (3e6) = 159 coincidences

Loss of 'air shower' coincidences quality ?
<# antenna per coincidence> : -7%
→ <|Dq|> < 3%
→ <|Dj|> < 1%
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Selected with NN trigger
A few simplified offline cuts are applied to reject :
● noisy periods
● angle/source reconstruction : hight c², near source position, zenith>80°
● direction-time correlations between coincidences

→ Consistency between selected and 1st order expectations for air showers
→ NN trigger may at once improve trigger purity & replace some offline cuts

3e6 coincidences recorded

225 coincidences selected

selected 'TREND std' (200)  selected 'NN trigger' (225) = 108 coincidences
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Coincidences summary
TREND std 
Recorded 

1.25e8

NN trigger
 Recorded

3e6

200
159

108
225

TREND std NN trigger  
Recorded  1.25e8 3e6

Selected 200 225

Selected TREND std (200)
 

Recorded NN trigger (3e6)
= 159

Selected TREND std (200)
 

Selected NN trigger (225)
= 108

Offline  cuts 
159


108
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Neural Network trigger study summary

● Achievements :
Data-driven study
Triggered data :   -82% @ antenna level

-98% @ array level
~90% efficiency on air showers 
 
● Limitations :
Training dataset too small, not pure & biased

● Next :
Data from 3-polarizations antennas of GRANDproto300
→ more informations should improve NN performance
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