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Towards a giant radio array for v detection

e Low interactions rate of UHE v
— low flux of v - extensive air shower on Earth
— huge area of detection

TO rate (Hz)

e Anthropic transient rate >10Hz even in « quiet » places
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— cheap detectors

— antennas without external (particle) trigger
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— a smart trigger is required to avoid saturation of acquisition
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A neural network as a smart trigger

How to discriminate air shower/anthropic signals @ antenna level?
— Use a neural network (NN)?

NN input = a radio time trace

NN target = 0/1 (anthropic origin/air shower origin)

On which data do train/test?
— experimental data rather than simulations
— data we already have, a subset of TREND data

TREND time traces —_1024* 5ns

'anthropic' (0) 'air shower' (1) 3
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TREND experiment : ﬂ]

50 butterfly antennas
Single-polarized
50-100 MHz

Self-triggered
Setup in XinJiang, China
Between 2011 and 2014

e Trigger @ antenna level if :
abs(amp, - u(amp)) > 6c(amp)

e Trigger @ array level if :
space-time correlations between
5+ antenna triggers

— « coincidence » recorded

In this study we use a subset : G o .
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TREND data labelisation

Before making predictions, NN must be trained on data for which label is known
— We put labels (‘anthropic'=0/'air shower'=1) on TREND radio time traces using

TREND standard data analysis : See [arXiv:1810.03070], 2018

Offline cuts were appplied to reject :

noisy periods

too long antenna signals

angle/source reconstruction : hight 2, near source position, zenith>80°
discontinuous trigger pattern at ground

direction-time correlations between coincidences




TREND data labelisation

1.25e8 coincidences recorded Simulations of air showers + TREND response :
(9e8 antenna time traces) 370 air showers would have been recorded
cuts cuts
reo— 200 coincidences selected 120

— 160 selected (40%)

—
2
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(1495 antenna time traces)
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e Consistency between selected experimental data & simulations

regarding shape (N/S geomagnetic expectations) & integral of angular distribution
— The 200 selected coincidences might be air showers with a contamination ~20%
* Contamination is high for 0>70 & 160<(p<240 -> rejected of labelisation

— 'air shower' label for the 984 traces (139 surviving coincidences)
— 'anthropic' label for the remaining ~9e8 traces




Convolutional Neural Network

~ Dataset ™
984*2 = 1968 # 'anthropic' traces (randomly picked)
984 # 'air shower' traces (w=2 to keep balance)
split = 80% training/20% test

~ Preprocessing ~
times traces shifted to a mean of 0 + scaled to a range [-1;1]
('mean of the trace' is irrelevant feature + help training)
first layer input = FFT(time trace) (works better)

~ Layers™
convs (filters=8/16, kernel size=51, padding='same’, activation="relu') + maxpoolings
60%-dropout + L2 regul = 2e-3 to avoid overfit

~ Fit~
optimizer = adam
loss = cross entropy




Model summary

Layer (type) Output Shape Param #

[(None, 1024, 1)]

input_1 (InputLayer)

convld (ConvlD) (None, 1024, 8) 416
max_poolingld (MaxPoolinglD) (None, 512, 8) 0
dropout (Dropout) (None, 512, 8) 0
convld 1 (ConvlD) (None, 512, 16) 6544
max_poolingld 1 (MaxPooling 1D) (None, 256, 16) 0
dropout_1 (Dropout) (None, 256, 16) 0
convld 2 (ConvlD) (None, 256, 16) 13072
flatten (Flatten) (None, 4096) 0
dropout_2 (Dropout) (None, 4096) 0
dense (Dense) (None, 16) 65552
dropout_3 (Dropout) (None, 16) 0

dense_1 (Dense)

Total params: 85,618
Trainable params: 85,618
Non-trainable params: O




Accuracy = #twell classified data / #data
If decision threshold = 0.5 :
accuracy = 83% on training & test sets

After training

0.80 - —— Training set (80%) —— Training set (80%)
0.751 Loss = f to minimize,
~ 0701 measures how far NN
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NN inferences on all data
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NN is applied to each 9e8 recorded traces
to simulate a ‘NN trigger":

0.6 +—

0.4

NN trigger @ antenna level if :
NN output (probability to come from air

Selection rate (test set)

0.2

shower) > decision threshold —— Anthropic
—— Air shower
NN trigger @ array level if : 0.0 U Accuracy | ! | |
. . 0.0 0.2 0.4 0.6 0.8 1.0
space-time correlations between 5+ Decision threshold

antenna NN triggers - recorded

e Recorded coincidences with 'TREND std' (without NN) :
Anthropic  1.25e8
Air shower 370 (simulation estimation)

* Expected recorded coinc. with 'NN trigger' (if we chose a decision threshold = 0.6) :
Fully dep. traces Indep. traces

Anthropic  18% (22.5e6) 0.07% (87 500)

Air shower 86% (318) 91% (337)

Actual recorded coincidences with ‘NN trigger' : 3e6 (2.4%)




Recorded with NN trigger

TREND std - selected & NN trigger - recorded
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selected 'TREND std' (200) m recorded 'NN
trigger' (3e6) = 159 coincidences
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Loss of 'air shower' coincidences quality ?
<# antenna per coincidence> : -7%

= <|AB]> < 3%
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Selected with NN trigger

A few simplified offline cuts are applied to reject :
* noisy periods

3e6 coincidences recorded

* angle/source reconstruction : hight y2, near source position, zenith>80°

* direction-time correlations between coincidences -
225 coincidences selected

Selected coincidences Selected coincidences
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selected 'TREND std' (200) m selected 'NN trigger' (225) = 108 coincidences

- Consistency between selected and 1 order expectations for air showers

—> NN trigger may at once improve trigger purity & replace some offline cuts 12



Coincidences summary

TREND std
TREND std NN trigger Recorded

Recorded 1.25e8 3eb 1.25e8
Offli t
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108 Recorded

3e6
Selected TREND std (200)

N
Recorded NN trigger (3e6)
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Selected TREND std (200)
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Selected NN trigger (225)
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Neural Network trigger study summary

e Achievements :

Data-driven study

Triggered data: -82% @ antenna level
-98% @ array level

~90% efficiency on air showers

* Limitations:
Training dataset too small, not pure & biased

e Next:

Data from 3-polarizations antennas of GRANDproto300
— more informations should improve NN performance
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