

PIERRE AUGER OBSERVATORY

ARENA 7th - 10th June 2022, Santiago de Compostela

Parameterization of the frequency spectrum of radio emission in the 30-80 MHz from inclined air showers

Sara Martinelli, Felix Schlüter, Tim Huege

08.06.2022

sara.martinelli@kit.edu

Simulation data-set

2160 CoREAS proton-simulations Log(E) = [18.4, 18.6, ..., 20.0, 20.2] eV Azimuth = [0, 45, ..., 270, 315] deg

Zenith = [65.0, 67.5, ..., 82.5, 85.0] deg

Star-shaped grid

How does the spectrum of the pulses look like?

 θ

$$= 85.0^{\circ}, \phi = 45^{\circ}, E = 10^{18.0} eV$$

$$r_{che} = 1406 \text{ m}$$

$$r_{emission:}$$

$$r_{emission:}$$

$$r_{emission:}$$

$$r_{emission:}$$

- 10 C

$$extsf{ heta_{che}} = rcos(1/n(h))$$

 $r_{che} = \tan(\theta_{che}) \cdot d_{MAX}$

$$\theta = 85.0^{\circ}, \ \phi = 45^{\circ}, \ E = 10^{18.6} eV$$

$$r_{che} = 1406 \text{ m}$$

$$extsf{ heta_{che}} = rcos(1/n(h))$$

 $r_{che} = \tan(\theta_{che}) \cdot d_{MAX}$

$$\theta = 85.0^{\circ}, \ \phi = 45^{\circ}, \ E = 10^{18.6} eV$$

 $r_{che} = 1406 \text{ m}$
Figure shown in A. Zilles, PhD Thesis
remission:

$$heta_{
m che} = rcos(1/n(h))$$

 $r_{
m che} = \tan(\theta_{
m che}) \cdot d_{
m MAX}$

$$\theta = 85.0^{\circ}, \phi = 45^{\circ}, E = 10^{18.6} eV$$

 $r_{che} = 1406 \text{ m}$
Figure shown in A. Zilles, PhD Thesis
Figure shown in A. Zilles, PhD Thesis

$$extsf{ heta_{che}} = rcos(1/n(h))$$

 $r_{che} = \tan(\theta_{che}) \cdot d_{MAX}$

on around

$$\theta = 85.0^{\circ}, \phi = 45^{\circ}, E = 10^{18.6} eV$$

 $r_{che} = 1406 \text{ m}$
Figure shown in A. Zilles, PhD Thesis
Figure shown in A. Zilles, PhD Thesis
Figure shown in A. Zilles, PhD Thesis

$$extsf{ heta_{che}} = rcos(1/n(h))$$

 $r_{che} = \tan(\theta_{che}) \cdot d_{MAX}$

$$\theta = 85.0^{\circ}, \phi = 45^{\circ}, E = 10^{18.6} eV$$

 $r_{che} = 1406 \text{ m}$
Figure shown in A. Zilles, PhD Thesis revision:
 $r_{errission:}$
 $r_{v=c/n}$
 $r_{v=c/n}$
 $r_{v=c/n}$

$$extsf{ heta_{che}} = rcos(1/n(h))$$

 $r_{che} = \tan(\theta_{che}) \cdot d_{MAX}$

$$\theta = 85.0^{\circ}, \phi = 45^{\circ}, E = 10^{18.6} eV$$

 $r_{che} = 1406 \text{ m}$
Figure shown in A. Zilles, PhD Thesis
Figure shown in A. Zilles, PhD Thesis

$$extsf{ heta_{che}} = rcos(1/n(h))$$

 $r_{che} = \tan(\theta_{che}) \cdot d_{MAX}$

Study on the simulation data-set

(more in back-up slides)

1) To find a stable fitting procedure for $Q(f) \rightarrow$ frequency offset set to $f_0 = 55$ MHz

2) To determine which model describes better the signal components spectral shape

Goal and motivation

We want to extract additional information carried by the short transient radio pulses to be used in reconstruction tools to better constrain the geometry (e.g. core position)

→ Parameterization of the spectral shape as a function of the lateral distance and d_{MAX} , the geometrical distance between core position and X_{MAX}

Previous works exploit dependence of the slope on X_{MAX} to achieve a reconstruction method (F. Canfora, S. Jansen)

Single-event lateral distribution

Frequency slopes of the Geo component from a simulation having $\theta = 85.0^{\circ}, \ \phi = 45^{\circ}, \ E = 10^{18.6} \ {\rm eV}$

Flattening of the spectrum \rightarrow shorter pulses and coherence

Parameterization of the spectral shape

Lateral distributions of simulations having the same **zenith angle** are studied separately.

Effect of noise introduced in the simulations by **thinning** increases with the lateral distance.

Stations above $\underline{r=2}$ are excluded from the analysis after applying:

core refraction displacement correction*
 early-late correction of the distance**

* "Refractive displacement of the radio-emission footprint of inclined air showers simulated with CoREAS" - F. Schlüter, M. Gottowik, T. Huege, J. Rautenberg

** "A Rotationally Symmetric Lateral Distribution Function for Radio Emission from Inclined Air Showers" - T. Huege, L. Brenk, F. Schlüter

Parameterization of the Geo component

$$Q(f) = A \cdot 10^{m_{\rm f} \cdot (f - f_0) + m_{\rm f2} \cdot (f - f_0)^2}$$
quadratic term
frequency slope

Frequency slope: lateral distribution function

Free fit of mean values in lateral distance bins

$$f(r) = A_1 \cdot \left[-e^{B \cdot (r-r_0)} + A_2 \cdot e^{-C \cdot (r-r_0)^2} \right]$$

Parameters distributions (individual fits with 5 free parameters)

Fix one by one the 5 parameters by looking at their distributions expressed as a function of d_{MAX}

$$f(r) = A_1 \cdot \left[-e^{B \cdot (r-r_0)} + A_2 \cdot e^{-C \cdot (r-r_0)^2} \right]$$

Fitting the mean values Parameters distributions (individual fits with 5 free parameters) $\begin{bmatrix} 0.075 \\ HW \end{bmatrix} = 0.025$ 2.00° $1.0 \cdot$ ന 1.75 0.52 1.00o 1.50 $\tilde{ extsf{4}}_{0.75}$ ' \mathcal{O} 1.252 1.00 r_0 50 100 150 <u>т</u>1 $d_{\rm MAX}$ [km] 50 100 10015050 150 $d_{\mathrm{MAX}}\,[\mathrm{km}]$ $d_{\mathrm{MAX}}\,[\mathrm{km}]$

1. $r_0(d_{\text{MAX}}) = \frac{p_0}{d_{\text{MAX}}} \cdot \log(d_{\text{MAX}}) + p_1$

1.
$$f(r) = A_1 \cdot \left[-e^{B \cdot (r-r_0)} + A_2 \cdot e^{-C \cdot (r-r_0)^2} \right]$$

1.
$$r_0 (d_{MAX}) = \frac{p_0}{d_{MAX}} \cdot \log(d_{MAX}) + p_1$$

2.
$$f(r, r_0 (d_{MAX}))$$

4 free parameters fits
2.
$$\frac{B(d_{MAX})}{C(d_{MAX})}$$

- Repeat the individual fits keeping free the remaining 4 parameters

- Look at the **new** parameters distributions expressed as a function of d_{MAX}

- Fix another parameter

Iterate until there are no parameters left

Frequency slope 1. $f(r) = A_1 \cdot \left[-e^{B \cdot (r-r_0)} + A_2 \cdot e^{-C \cdot (r-r_0)^2} \right]$ 1. $r_0(d_{\text{MAX}}) = \frac{p_0}{d_{\text{MAX}}} \cdot \log(d_{\text{MAX}}) + p_1$ 2. $\frac{B(d_{\text{MAX}})}{C(d_{\text{MAX}})}$ $f(r, r_0(d_{MAX}))$ 4 free parameters fits 2. 3. $f(r, r_0(d_{\text{MAX}}), \frac{B(d_{\text{MAX}})}{C(d_{\text{MAX}})})$ 3 free parameters fits 3. $A_2(d_{MAX})$ 4. $f(r, r_0(d_{\text{MAX}}), \frac{B(d_{\text{MAX}})}{C(d_{\text{MAX}})}, A_2(d_{\text{MAX}}))$ 2 free parameters fits 4. $C(d_{\text{MAX}})$ 5. $f(r, r_0(d_{\text{MAX}}), \frac{B(d_{\text{MAX}})}{C(d_{\text{MAX}})}, A_2(d_{\text{MAX}}), C(d_{\text{MAX}}))$ 1 free parameter fits 5. $A_1(d_{\text{MAX}})$ D(1))

$$\rightarrow \quad f(r, r_0(d_{\text{MAX}}), \frac{B(d_{\text{MAX}})}{C(d_{\text{MAX}})}, A_2(d_{\text{MAX}}), C(d_{\text{MAX}}), A_1(d_{\text{MAX}}))$$

Parameterization of the CE component

$$L(f) = A \cdot 10^{m_{\rm f} \cdot (f - f_0)}$$
frequency slope

Conclusions

The **Charge-excess spectrum** can be described by a linear model, while the quadratic model describes better the **Geomagnetic spectrum**.

For both components, a parameterization of the spectral shape expressed as a function of r and d_{MAX} was derived.

The parameterization is valid in the 30-80 MHz bandwidth and for observer positions at r < 2.

Given zenith angle, X_{MAX} and antenna position, the slope and quadratic term can be **analytically calculated** and exploited in reconstruction algorithm to better constrain the geometry.

Back-up

Parameterization: Geomagnetic frequency slope

$$f(r) = A_{1} \cdot \left[-e^{B \cdot (r-r_{0})} + A_{2} \cdot e^{-C \cdot (r-r_{0})^{2}} \right]$$
1. $r_{0} (d_{MAX}) = \frac{p_{0}}{d_{MAX}} \cdot \log(d_{MAX}) + p_{1}$
2. $\frac{B(d_{MAX})}{C(d_{MAX})} = \frac{p_{0}}{d_{MAX}} \cdot \log(d_{MAX}) + p_{1}$
3. $A_{2}(d_{MAX}) = \frac{p_{0}}{d_{MAX}} \cdot \left[\log(p_{1} \cdot d_{MAX}) - p_{2} \right] + p_{3}$
4. $C (d_{MAX}) = p_{0}^{-d_{MAX}} - p_{1} \cdot \log(d_{MAX} - p_{2}) + p_{3}$
5. $A_{1}(d_{MAX}) = \frac{p_{0}}{d_{MAX}} \cdot \log(p_{1} \cdot d_{MAX}) + p_{2} \cdot d_{MAX} + p_{3}$

Constant values						
Parameter	p_0	p_1	p_2	p_3		
r_0	-3.558	1.738				
B/C	-7.078	1.625				
A_2	3.468	0.2335	-0.4804	0.5863		
	0.9985	0.2155	11.69	0.6492		
$A_1 [\mathrm{MHz}^{-1}]$	-0.3792	0.2008	4.056	0.0359		

Parameterization: Geomagnetic quadratic term

$$f(r) = A_{1} \cdot \left[-e^{B \cdot (r-r_{0})} + A_{2} \cdot e^{-C \cdot (r-r_{0})^{2}} \right]$$

$$1. \quad r_{0}(d_{MAX}) = -p_{0} + p_{1} \cdot d_{MAX} - \frac{p_{2}}{d_{MAX}^{2}} \cdot \left[\log(p_{3} \cdot d_{MAX}) - d_{MAX} \right]$$

$$2. \quad \frac{B(d_{MAX})}{C(d_{MAX})} = -p_{0}^{-d_{MAX}} - p_{1}^{d_{MAX}^{2}} + p_{2}$$

$$3. \quad A_{2}(d_{MAX}) = -p_{0} + p_{1} \cdot d_{MAX} + \frac{p_{2}}{d_{MAX}^{2}} \cdot \left[\log(p_{3} \cdot d_{MAX}) - d_{MAX}^{2} \right]$$

$$4. \quad C(d_{MAX}) = \frac{p_{0}}{d_{MAX}} \cdot \log(p_{1} \cdot d_{MAX}) - p_{2} \cdot d_{MAX} + p_{3}$$

$$5. \quad A_{1}(d_{MAX}) = p_{0} \cdot d_{MAX} + p_{1}$$

$$\begin{array}{|c|c|c|c|c|c|c|}\hline Constant values \\\hline Parameter & p_0 & p_1 & p_2 & p_3 \\\hline r_0 & -1.219 & 0.0019 & -8.768 & 558448 \\\hline B/C & 1.014 & 1.00001 & 1.824 & \\\hline A_2 & 73.28 & -0.0009 & -74.21 & 0.0482 \\\hline C & 59.77 & 0.0898 & -0.0018 & -0.2631 \\\hline A_1 \left[\mathrm{MHz}^{-2} \right] & 1.169 \cdot 10^{-6} & 2.957 \cdot 10^{-5} & \\\hline \end{array}$$

Parameterization: Charge-excess frequency slope

$$f(r) = A_1 \cdot \left[-e^{B \cdot (r-r_0)} + A_2 \cdot e^{-C \cdot (r-r_0)^2} \right]$$

1.
$$r_{0}(d_{MAX}) = \frac{p_{0}}{d_{MAX}} \cdot \log(d_{MAX}) + p_{1}$$
2.
$$\frac{B(d_{MAX})}{C(d_{MAX})} = p_{0} \cdot d_{MAX} + p_{1}$$
3.
$$A_{2}(d_{MAX}) = p_{0} \cdot d_{MAX} + p_{1}$$
4.
$$C(d_{MAX}) = \frac{p_{0}}{d_{MAX}} \cdot \log(d_{MAX}) + p_{1}$$
5.
$$A_{1}(d_{MAX}) = \frac{p_{0}}{d_{MAX}} \cdot \left[\log(p_{1} \cdot d_{MAX}) - p_{2}\right] + p_{3}$$

Constant values						
Parameter	p_0	p_1	p_2	p_3		
r_0	-2.021	1.320				
B/C	0.0016	0.2764				
A_2	0.0009	0.8870				
C	-10.54	2.570				
$A_1 [\mathrm{MHz}^{-2}]$	0.0270	388.0	4.748	0.0089		

Field decomposition

Geomagnetic and Charge-excess field decomposition^{*}

$$E_{\vec{v}\times\vec{B}}\left(\vec{r},t\right) = E_{geo}\left(\vec{r},t\right) + \cos\psi E_{ce}\left(\vec{r},t\right)$$
$$E_{\vec{v}\times\left(\vec{v}\times\vec{B}\right)}\left(\vec{r},t\right) = \sin\psi E_{ce}\left(\vec{r},t\right)$$

Positions on the $\vec{v} \times \vec{B}$ - axis are excluded from the analysis

*As in *"Simulation of radiation energy release in air showers", JCAP,* C. Glaser, M.

Erdmann, J. R. Hörandel, T. Huege, J. Schulz

Single-event slope footprint

Geomagnetic component - $\theta = 85.0^{\circ}, \phi = 45^{\circ}, E = 10^{18.6} \text{ eV}$

Slope lateral distribution: fit vs parameterized values

34

Xmax dependence

Broader frequency bandwidth

Quadratic term of a broader frequency bandwidth (80 – 300 MHz, ARIANNA) shows interesting features

From *"Reconstructing the cosmic-ray energy from the radio signal measured in one single station"*, C. Welling, C. Glaser, A. Nelles

$$\begin{pmatrix} \mathcal{E}_{\theta} \\ \mathcal{E}_{\phi} \end{pmatrix} = \begin{pmatrix} A_{\theta} \\ A_{\phi} \end{pmatrix} 10^{f \cdot m_f + (f - 80 \text{MHz})^2 \cdot n_f} \exp(\Delta j)$$

Positive quadratic correction identifies signals measured outside the Cherenkov ring, negative otherwise

Broader frequency bandwidth

For wider frequency regions, an additional correction, not only quadratic, could be needed

37

"Splitting" feature

Positive vxvxB: upstream (early) Negative vxvxB: downstream (late)

 Z_{vB} / d_{MAX}

Early-late "splitting" effect

Positive vxvxB: