New sensors for acoustic neutrino detection

Arena workshop 10/6/2022

Joy Dortant¹, Ed Doppenberg¹, Rob Jansen¹, Peter Toet¹, Sander von Benda-Beckmann¹, Jan de Vreugd¹, Ernst-Jan Buis^{1,2}

1) TNO, Delft, NL, 2) Nikhef, Amsterdam, NL

Acoustic neutrino telescope concept

Sneak preview

E.J.Buis, "New sensors for acoustic neutrino detection", Arena Workshop, Santiago de Compostella

Hydrophone concept based optical fibers

Transducer convert pressure into a wavelength shift.

Hydrophone concept

Fiber laser

- Erbium doped fiber laser inserted in the optical fiber.
- Fiber laser is of Distributed Freedback type

Laser

₹ }

• Linewidth 5 kHz

π-shifted DFB

-

FBG

FBG → I

Doped fiber

Reflection spectrum of the

Laser

Pump

Interrogator

Interrogator

Interrogator

Interferometer sensitivity to $10^{-19} \text{ m/}\sqrt{\text{Hz}}$

New transducer design, requirements

- Shall be operated in the deep sea:
 - Static pressure mechanism
- High sensitivity to detect neutrinos
 - Sea state 0 sensitivity

-> Detect mPa pulses in a static pressure environment of MPa.

New transducer design

Orifice: 300 micron EDM drilling Membrane: laser welding

TNO

E.J.Buis, "New sensors for acoustic neutrino detection", Arena Workshop, Santiago de Compostella

Experimental setup in an anechoic basin

Experimental setup in an anechoic basin

TNO

Experimental setup in an anechoic basin

Data acquisition

Bode plot

- Mechanical resonance peak ~15 kHz
- Helmholtz resonance peak at 600 Hz
- Two types:
 - single membrane
 - double membrane

Transfer function

- Mechanical resonance peak ~15 kHz
- Helmholtz resonance peak at 600 Hz
- Two types:
 - single membrane
 - double membrane

Transfer function: residual air

Comsol simulations

- Residual air in the transducer has a large impact on the transfer function! (an air bubble of 1mm diameter has only 0.5% volume percentage)
- Established a procedure to fill the sensor

Transfer function: residual air

Include dummy sensors in the process

- Residual air in the transducer has a large impact on the transfer function! (an air bubble of 1mm diameter has only 0.5% volume percentage)
- Established a procedure to fill the sensor

TNO

Directionality

Directionality

Pressure qualification

Apply pressure in steps of about 20 bars

Pressure qualification

Hydrophone sensitivity

Simulation updates

- Simulations of signals in a realistic noise environment and mixed with dolphin clicks (Greek data) shall determine the sensitivity to transients.
- Based on simulations by Clara Gatius (next talk).

Conclusions

- Sensor has been design and extensively tested.
 - (All effects that impact on) transfer functions are understood
- Survives the challenging environment of the deep sea
 - Ways to further improve sensitivity has been identified
- Simulation framework has been set up to properly determine the sensitivity to transients.
 - Include cross correlation from many hydrophones
 - Directionality of sea state noise
- Ready to build a first prototype string for deployment.

Fiber laser updates: small laser cavities

- Transducer converts pressure in to <u>strain</u> in the optical fiber
- Short fiber laser increases sensitivity:
 - Fiber laser length improved from <u>30 mm -> 22mm -> 14 mm</u>

Doped fiber

FBG

-

Pump

FBG >

Laser

Fiber laser updates: Stress tests

work done by Thijs van Eeden

- Degradation qualification measurements
- Monitor fiber laser output with 500 mW pump laser power.
- No degradation after 2500 hours and 20 times required pump power.

