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Charge excess emission


• Accumulation of negative 
charges close to the shower 
core


• Radial polarisation


• ≈ 10% of the amplitude of the 
total emission for vertical air 
showers


Geomagnetic emission


• Induced dipole with 


• Polarisation along - 


• Main contribution to the 
radio signal


→
𝐁geo

𝒗 × 𝑩
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Radio signal from atmospheric extensive air-showers

Schröder (2017)

2 main sources for the radio emission

vertical air-showers: well known, mature and verified

Inclined air showers: still several challenges, trending topic

(Schlüter et al. 2022, Chiche et al. 2022) 



The challenge of inclined air-showers

vertical
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Why inclined showers?
• High sensitivity required to address the low fluxes at UHE (target of AugerPrime, 

Beacon, GCOS, GRAND)


• Large footprint: better sensitivity at UHE with sparse arrays


But several complex characteristics challenging to understand 
(Huege et al., 2019, Schlüter et al. 2022, Decoene et al 2021., Chiche et al., 2022)
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Why inclined showers?

100 km

10 km

ρ0
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How do all these characteristics affect the radio emission?

• High sensitivity required to address the low fluxes at UHE (target of AugerPrime, 
Beacon, GCOS, GRAND)


• Large footprint: better sensitivity at UHE with sparse arrays


But several complex characteristics challenging to understand 

decreasing ρ

(Huege et al., 2019, Schlüter et al. 2022, Decoene et al 2021., Chiche et al., 2022)
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Geomagnetic emission dependency with air-density

11000 ZHAireS simulations with 
various energy and arrival directions

How does the radio emission depend on the  air density/zenith angle?Xmax

Computation of the geomagnetic 
energy dependency with ρxmax

GRAND site  valueBfield
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Geomagnetic emission dependency with air-density

11000 ZHAireS simulations with 
various energy and arrival directions

Unexpected dependency of the geomagnetic emission with air-density

How does the radio emission depend on the  air density/zenith angle?Xmax

?

Computation of the geomagnetic 
energy dependency with ρxmax

Geomagnetic radiated energy

GRAND site  valueBfield
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The clover-leaf pattern: a third type of radio-emission
 component: dominant contribution of Askaryan emission?v × v × B

Expected pattern

Observed pattern: clover-leaf

Projection of Efield 
on vxvxB

• ~ 10% of the total emission for 
inclined showers


• Observed in simulations for the 
3.4-4.2 GHz band only here 

 𝒪(100 MHz)

New polarization signature on the 
 component! v × v × B

5

[k
m

]

[k
m

]

[km]

[km]

CoREAS (85 degree) ZHAireS
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The clover-leaf pattern: a third type of radio-emission
 component: dominant contribution of Askaryan emission?v × v × B

Expected pattern

Observed pattern: clover-leaf

Clover-leaf pattern: hints for a third type of emission dominant over 
the Askaryan for inclined EAS 

Projection of Efield 
on vxvxB

• ~ 10% of the total emission for 
inclined showers


• Observed in simulations for the 
3.4-4.2 GHz band only here 

 𝒪(100 MHz)

New polarization signature on the 
 component! v × v × B
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Where do this Geomagnetic cut-off and the 

clover-leaf pattern come from? Are they linked?



Dependency of the cut-off with geomagnetic field

Almost no cut-off in the geomagnetic emission for Auger !Bfield

Scaling does not follow   (Glaser et al., 2016)Erad,geo ∝ B2sin2 α

Test of 2 different  values with CoREAS simulationsBEarth

GRAND Bfield Auger Bfield
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Spatial coherence of the radio signal

L

Geomagnetic cut-off: function of  and ρair BEarth

Could be linked to the shower lateral extent! L(ρair , BEarth)

Dxmax

λ

Spatial coherence length: lc = λD/L
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Spatial coherence of the radio signal

L

Geomagnetic cut-off: function of  and ρair BEarth

Could be linked to the shower lateral extent! L(ρair , BEarth)

Dxmax

λ

Spatial coherence length: lc = λD/L From ZHAireS simulations

(Scholten et al., 2007)vtransverse(t) =
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(et/τ − 1 −

t
τ

)

Collision

L = xtransverse(t = τ)
8

: characteristic time of inelastic collisionτ

BGRAND



Spatial coherence of the radio signal
Spatial coherence length: lc = λD/S

Loss of spatial coherence for inclined showers!

Could efficiently model the geomagnetic cut-off

9

GRAND magnetic field value
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Hints for other processes  
The geomagnetic emission process becomes less efficient at low density
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⃗v dCollision
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χ0(h) lsynch(h, Bgeo, E, ν)
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C. James (2022)

Geomagnetic: synchrotron:



Hints for other processes  
The geomagnetic emission process becomes less efficient at low density

⃗v d

High density Low density

⃗v dCollision

γ
χ0(h) lsynch(h, Bgeo, E, ν)

80 degree shower: transition regime at       
~100 MHz for GRAND and ~ 1 GHz for Auger

 = : transition geomagnetic/synchrotron emission lsynch(h, Bgeo, E, ν) χ0(h)

Synchrotron emission visible with 
GRAND but hardly with Auger
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Geomagnetic 
regime

Synchrotron 
regime

C. James (2022)

Geomagnetic: synchrotron:
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The clover-leaf pattern: hints of a synchrotron emission
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Simulation of an  pair in a uniform  with Corsika8e+/− Bfield

Synchrotron  predictions Clover-leaf pattern

Credits to Nikolaos Karastathis 

Particles with same energy, starting vertically downwards, observer on the symmetry axis 
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The clover-leaf pattern: hints of a synchrotron emission
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Simulation of an  pair in a uniform  with Corsika8e+/− Bfield

Synchrotron emission of an   pair leads to a clover-
leaf like polarization pattern!

e+/−

Synchrotron  predictions Clover-leaf pattern

Credits to Nikolaos Karastathis 

Particles with same energy, starting vertically downwards, observer on the symmetry axis 
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Characteristic lengths

Coherent 
geomagneticIncoherent

3 distinct regimes as a function of air density

Explain the geomagnetic cut-off and the clover-leaf pattern!
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C
oherent synchrotron



Conclusion
2 major new features in the radio emission of very inclined showers

Geomagnetic cut-off Clover-leaf pattern

Linked to a loss of coherence Linked to synchrotron radiation

Refine our understanding of the radio emission: Geomagnetic + Askaryan 
description no more valid

Could strongly affect detection strategies of future experiments

Could help for cosmic-ray/neutrino discrimination
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