
Digi - Reco Profiling
Alejandro Alonso [PIC / UAB]

Tutor:
Josep Flix

Related to: This presentation

1

https://docs.google.com/presentation/d/1Ch1cldNoAEoDTsym6O6pBwCvNPwuAsGsyV0mw_u0Ypk/edit#slide=id.p

Environment and tests
▰ Same environment as cms - sim profiling
▰ Test are done with a local file
▰ There are also test done with remote files

Check execution variance
(5 executions)

Almost no variance between same
executions 0,05 events/second
Safe to use one execution to
profile

Number of threads analysis
Speedup 1024 events

8 threads 5.41

16 threads 6.73

32 threads 6.34

Performance = events/second
1024 events on each experiment → gen - sim
was stable with 1024
Multithreading is totally ineficient
hyperthreading is worst than simple threading
(overhead)

Resource usage
analysis
Mainly CPU usage analysis and it’s different
parts

5

CPU efficiency
We can see 4 phases

Searching files → 2 min
Reading files and loading .root into memory → 1 min 30 sec
Event compute → 8 min
Termination → 15 sec

A lot of spikes on event compute → interruption of CPU time
Due to slow file lectures or memory access ?

Processor pipeline port usage
Haswell pipeline architecture
Ports 0,1,5,6 compute, 2,3,4,7 memory
Maximum usage on port 6 (integer
port) with 25% * 2 = 50% → no saturated
resources

Phase 2 Phase 3

Memory hierarchy
and disk analysis
Different levels of memory cache, DRAM,
disk

8

DRAM Bytes transferred and
memory access type # Memory access still very low

compared to machine bandwidth
Memory access type is better than
cms - sim
Bandwidth isn’t saturated during
phase 2 where there is more memory
usage
Memory affects performance but isn’t
that big of a problem

Disk access
Quite number of accesses during event compute
Almost all accesses give a 90% of usage
90% of usage is enough to say that a resource is
saturated, even though accesses seem so distant
This explains the spikes of interruption on cpu
time Phase 3

Comparison between
remote and local files
CPU and network comparison

11

Remote files CPU efficiency
New phase between 2 and 3, events must wait for
information of the remote files to reach
Phase 1 takes longer due to the search of remote files
Even more spikes during the event compute, probably
due to remote data dependency
The amount of events/second needed is higher, this is
due to the sequential part being even bigger
Multithreading inefficiency must be worst in case of
remote files → multithreading is mostly useless
Overall performance is 70% worst with remote files

Network comparison
Network graphs shows how file streams input data
during the event compute
This behaviour explains the spikes during the
event compute

Local files Remote files

Conclusions
▰ Scalability with the number of threads it’s pretty bad
▰ The number of events needed to make multithreading

relevant is enormous due to the sequential part being too
long

▰ Memory accesses are not a big problem
▰ Disk access is saturated and might clog the disk access while

using multithreading
▰ Remote files create a data dependency that doesn’t allow

the program to go faster than the speed of internet data

THANKS!

