

Head-Tail Monitor for CC Diagnostics

T. Levens (BE-BI)

152nd HiLumi WP2 Meeting, 2nd July 2019

Head-Tail Monitor

LHC Head-Tail Monitor is a wide-band beam position monitor capable of measuring intra-bunch beam position.

- Long strip-line BPM
- 180° analogue hybrid calculates sum (Σ) and difference (Δ)
- Signals acquired by high speed digitizer in service gallery

Originally installed in SPS/LHC for chromaticity measurements, now used primarily for instability diagnostics.

LHC Head-Tail installations

Four single plane 40cm strip-line pick-ups (BPLH/V) installed close to Q5R4/Q6R4 (locations optimised for high β)

Data acquisition with commercial high-speed (10 GSPS, 10 bit) oscilloscopes in UA47

Head-Tail for CC diagnostics

- First crabbing of a proton beam observed with the SPS HT in 2018
 - CC not phased to the RF frequency resulting in a periodic oscillation
- Reconstruction of crabbing made using measured intra-bunch position
 - Assuming a Gaussian transverse distribution

4

Head-Tail correction for CC

- Well phased CC results in a static intrabunch position offset at the HT pick-up
- HT monitor measurement has a "baseline" which is superimposed on the signal
 - Orbit offset, imperfections in PU/hybrid, ...
 - Reduces available dynamic range
- In SPS correction has been performed by taking a reference measurement in each cycle with the cavities un-phased or off
 - Works well, but not a technique that is applicable to long fills in HL-LHC...
- Correction of asymmetry due to PU & cable response also needed

HT in HL-LHC

- Existing HT monitor locations optimised for high β
 - BPLH.7R4.B1 & BPLV.A6R4.B1
 - BPLH.6R4.B2 & BPLV.7R4.B2
- These locations do not necessarily have good phase advance with respect to the CC in IP1[H] and IP5[V]
- ~1m of space reserved between Q5 and Q6 on both left and right of P4 (location of existing BQK) for new pick-ups
 - LHC-BPW-EC-0001
- Pick-up type (EO vs. standard, etc) not yet decided
 - Baseline is 1 BPM per beam/plane

s [m]

s [m]

Phase advance from IP

(Preliminary) Conclusion

- Based on the latest optics, although the phase advances are not optimal, the crabbing *should* be visible at the current HT pick-ups (with averaging)
 - Order of 10µm residual for both cavities on (at the limit)
 - Order of 100µm for single cavity at 3.4 MV
- Some possibility for optimisation by moving pick-ups
 - Note: optimum for single cavity is not the same as for the residual
- Space of existing BQK has been reserved for new pick-ups
 - Exact technology choice (EO vs. standard) not yet decided
- Still some open questions for the signal processing to be investigated
 - Baseline evolution with bunch parameters
 - How to do baseline correction during a long fill
 - Cable transfer function deconvolution

Thank you

Correction for instability diagnostics

- Baseline corrected by subtracting average of many turns of signal
- Removes baseline, preserves varying signal

13

HT Monitor upgrade YETS17-18

 During YETS17-18 new oscilloscopes have been installed for LHC & SPS HT monitors:

Model	Samp.	Res.	Turns	Readout	File Size
Old	10 GSPS	8-bit	11	3 MB/s	40 MB
New	10 GSPS	10-bit	451	170 MB/s	3.2 GB

- Significant upgrade in resolution, acquisition length and readout speed compared to old models
- New dedicated 10 GbE fiber link from UA47 to dedicated storage server in CCR to avoid saturating technical network
- Pick-ups, hybrids & cabling are unchanged

HT Monitor upgrade YETS17-18

