Measuring the skew-sextupolar component of a crab-cavity from turn-by-turn observations

Michele Carlà, Lee Robert Carver, **Androula Alekou**, Hannes Bartosik With the help of the SPS OP group

02 Jul 2019

《 ロ 》 《 御 》 《 聖 》 《 理 》 《 理

 990

From "LHC Crab Cavities Impedance and Multipole Update" J. A. Mitchell:

 $7/14$

 \equiv

 QQ

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} +$

- b3 (sextupole) is the strongest multipole
- ► In the SPS crab cavities are installed rotated by 90° : b3 \rightarrow a3 (skew sextupole)

By exciting the horizontal betatron motion two vertical spectral lines are observed:

- \triangleright V_{20} : spectral line with frequency $2Q_x$, V_{00} : Static offset of the orbit
- \triangleright Both lines have amplitude proportional to a_3
- \blacktriangleright In SPS the strong vertical decoherence due to impedance does not allow to observe cleanly modes driven by the vertical betatron motion (H_{11}) .

KORK ERREST ORA

Spectral analysis of V_{20}

For each acquisition:

- 1. Q_x : average over each horizontal BPM (à la Laskar)
- 2. H_{10} amplitude, phase and damping (damping: average over each horizontal BPM)

 QQQ

- 3. Undamp the vertical signal
- 4. Evaluate amplitude and phase of V_{20} for each vertical B[PM](#page-2-0)

Analysis of V_{00}

For each acquisition:

- 1. Orbit is obtained from the average of \sim 1000 turns before the kick
- 2. V_{00} is the difference of the orbit and the average of \sim 100 turns after the kick

 4 ロ) 4 何) 4 ヨ) 4 コ)

 $2Q$

Þ

Typical BPM signal... no averaging, no filtering

Amplitude and phase of 50Hz is evaluated using 3000 turns before the kick

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

 \triangleright 50Hz is purged from the signal

Measurements/Experimental results

 $\geq 20/10/2017$: positive test with a static skew-sextupole

- \triangleright No skew sextupoles is present in SPS, a 5 mm vertical bump in an octupole (LOE.33002) was used to produce a feed-down.
- \triangleright The measurement was repeated for an octupole strength of K3 = ± 2 , ± 5 and a vertical bump of ± 5 mm
- \triangleright Q20 optics was used.
- \blacktriangleright 10/10/2018: measurement with the crab cavity
	- \triangleright 2 acquisitions for a crab cavity voltage of: 0.1 and $+1$ MV
	- \triangleright Q26 optics was used.
	- \triangleright An a3 several times above the expected value was observed!

Part of the disagreement comes from the BPM frequency response

- \triangleright SPS BPMs have a narrow pass-band filtere centered around 200 MHz
- \rightarrow BPM does not measure the *'center of mass'* of the bunch
- It measures the 200 MHz component of the 'center of mass'

To work around the problem the crab-cavity voltage is determined from the vertical [or](#page-8-0)bit and the [m](#page-6-0)[e](#page-0-0)asured a_3 i[s n](#page-6-0)orm[al](#page-7-0)[iz](#page-8-0)e[d b](#page-20-0)[y](#page-0-0) [th](#page-20-0)[is](#page-0-0) [va](#page-20-0)lue.

Two independent fits: $V_{20} \rightarrow a_3 = 0.99$ T/m, ψ : -76° , $V_{00} \rightarrow a_3 = 0.90 \text{ T/m}$ (expected a_3 : 0.15 T/m) **K ロト K 倒 ト K ミト** $\rightarrow \equiv$

 2990

 \equiv

Are there other sources of V_{00} and V_{20} ?

- \triangleright Vertical orbit + octupoles \Rightarrow feed-down to skew-sextupole! Octupoles were off during the measurement ...residual field?
- ► Vertical orbit + normal sextupoles \Rightarrow second order excite V_{00}/V_{20} Is a second order effect but there are plenty of sextupoles

 \equiv

 QQQ

Real and Imaginary part of a_3 from V_{20} (and simulation)

イロト イ母 トイミト イミト ニヨー りんぺ

Now the sextupoles contribution is removed:

K ロ > K 레 > K 코 > K 코 > 트로드 > O Q O

 \triangleright Second order effect from the sextupoles is ...huge

also octupoles contribution is removed too:

KOD KARD KED KED E VOOR

- \triangleright Second order effect from the sextupoles is ...huge
- \triangleright Also Octupoles have a strong impact

Summary

- **IDED** Measurements of V_{00} and V_{20} with a static skew sextupole (vertical bump in an octupole) shows agreement with theory
- \triangleright Crab-cavity measurement instead is far from expectations
- \blacktriangleright It was found that sextupoles and octupoles, due to the large vertical orbit induced by the crab-cavity, play an important role in the analysis.
- Including sextupoles and octupoles in the analysis requires a good understanding of the SPS non-linear model

- \triangleright While the sextupole model is "quite" robust the octupole one is questionable...
- \triangleright Work to understand the octupole model is still undergoing!

Skew sextupole strength from V_{20} (Octupole)

 OQ イロト イ押ト イヨト イヨ

SPS multibunch detuning (what lucky coincidence!)

- \blacktriangleright 72 bunches in the ring
- ► Horizontal plane is ok up to \sim 4 · 10^{12}
- \triangleright Vertical plane exhibits a strong tuneshift
- **No excitation on the vertical plane allowed!** ...but we don't need it

 (0.125×10^{-11})

 QQQ

Induced vertical motion at turn 'n' induced by kick 't': $A_3 \cdot x^2(t) \cdot \theta(s_{\text{bpm}} - s_{\text{skew}} + (n-t)C) \cdot \sqrt{\beta_y^{\text{bpm}} \beta_y^{\text{skew}}} \sin(\Delta \psi_y + 2\pi(n-t)Q_y)$

 $y(n) = \sum_{n=1}^{n}$ $t=0$ $A_3\sqrt{\beta_\text{y}^\text{bpm}\beta_\text{y}^\text{skew}}\sin(\Delta\psi_\text{y}+2\pi(n-t)Q_\text{y})\times\left[\sqrt{\beta_\text{X}^\text{skew}J_\text{x}}\frac{\sin(\psi_\text{X}^\text{skew}+2\pi tQ_\text{x})}{\sin(\psi_\text{X}^\text{skew}+2\pi tQ_\text{x})}\right]^2$ $A_3\sqrt{\beta_\text{y}^\text{bpm}\beta_\text{y}^\text{skew}}\sin(\Delta\psi_\text{y}+2\pi(n-t)Q_\text{y})\times\left[\sqrt{\beta_\text{X}^\text{skew}J_\text{x}}\frac{\sin(\psi_\text{X}^\text{skew}+2\pi tQ_\text{x})}{\sin(\psi_\text{X}^\text{skew}+2\pi tQ_\text{x})}\right]^2$

$$
y(n) = \sum_{t=0}^{n} A_3 \sqrt{\beta_y^{\text{bpm}} \beta_y^{\text{skew}}} \sin(\Delta \psi_y + (n-t)\nu_y) \times \left[\sqrt{\beta_x^{\text{skew}} J_x} \sin(\psi_x^{\text{skew}} + t\nu_x) \right]^2
$$

$$
\sum_{t=0}^{n} e^{it\nu} = \frac{1 - e^{i(n+1)\nu}}{1 - e^{i\nu}}
$$

$$
y(n) = V_{20} + V_{02} + V_{01} + V_{0}
$$

$$
V_{20} = A_3 J_x \frac{\beta_x^p \sqrt{\beta_y^o \beta_y^p}}{8i} \cdot \left[\frac{e^{i(2\nu_x + \nu_y - \Delta \psi_y + 2\psi_x^p)}}{e^{i(2\nu_x + \nu_y)} - 1} - \frac{e^{i(2\nu_x - \nu_y + \Delta \psi_y + 2\psi_x^p)}}{e^{i(2\nu_x - \nu_y)} - 1} \right] e^{2i\nu_x n} - \text{c.c.}
$$

The skew-sextupole drives an oscillation with frequency $2Q_x$ on the vertical plane \propto A₃ ⋅ J_x

K ロ ▶ K (日) K (日)

No skew-sextupoles in SPS: Octupole $+$ vertical bump

- \blacktriangleright LOE.33002 was used
- \blacktriangleright \pm 5mm vertical bump
- ► $K_3 = \pm$ 5 & ± 2 $\rm m^{-4}$ ($K_3 = \pm 2$ produces an A_3 very close to the C.C. one \simeq 0.013 $\rm m^{-3}$)

KORK ERREST ORA

Time dependent A_3 + longitudinal beam emittance

- ▶ Standard operation: head and tail of the bunch see opposite $A_3 \rightarrow$ average to 0
- \triangleright Running the crab-cavity on-crest \rightarrow A₃ does not average to zero

 $\mathbf{A} \equiv \mathbf{I} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

 2990

 \triangleright Bunch length(4σ): 3ns \triangleright Energy spread(1σ): 1.5‰

Time dependent A_3 + longitudinal beam emittance

- ► Standard operation: head and tail of the bunch see opposite $A_3 \rightarrow$ average to 0
- \triangleright Running the crab-cavity on-crest \rightarrow A₃ does not average to zero

Bunchlength(4σ): 3ns Energy spread(1σ): 1.5\% [C.](#page-19-0)[C.:](#page-20-0) [680](#page-20-0)[kV](#page-0-0)

 299