# HL-LHC instrumentation

#### A. Alekou, H. Bartosik

Thanks to A. Boccardi, R. Calaga, M. Carla', L. Carver, R. De Maria, M. Krupa, T. Lefevre, T. Levens, Y. Papaphilipou, R. Tomas, BI Group

# HL-LHC injection optics (v1.4)

- LHC Beam Instrumentation to be used during CC commissioning:
  - Head Tail (HT) monitors
  - Wire Scanners (WS)
  - BPMs (standards and DOROS [higher resolution]), ADT (typically more sensitive and we can have a lot more turns)
  - Beam Synchrotron Radiation Telescope (BSRT), Beam Gas Vertex (BGV), Multi-band Instability Monitor (MIM)



There is 1 pair of CCs on each side of the Interaction Points (IP), per beam (i.e. total of 16 CCs)















#### IP1/IP5











ACFCA AR1.B1 A/B: A: close to IP B: furthes away







A/B ~1m apart: group together, left set, right set

#### Cavity-name anatomy:



• During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV

- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location

- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location
- V<sub>CC</sub>=1 MV (total of 1 CC pair), E<sub>inj</sub>=450 GeV, θ= 0.00222 mrad

- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location
- V<sub>CC</sub>=1 MV (total of 1 CC pair), E<sub>inj</sub>=450 GeV, θ= 0.00222 mrad

Head Tail (HT) monitor

- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location
- V<sub>CC</sub>=1 MV (total of 1 CC pair), E<sub>inj</sub>=450 GeV, θ= 0.00222 mrad

Head Tail (HT) monitor

Wire-scanner (WS)

- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location
- V<sub>CC</sub>=1 MV (total of 1 CC pair), E<sub>inj</sub>=450 GeV, θ= 0.00222 mrad

Head Tail (HT) monitor

Wire-scanner (WS)

BPM reading, including filtering









- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location
- V<sub>CC</sub>=1 MV (total), E<sub>inj</sub>=450 GeV, θ= 0.00222 mrad

Head Tail (HT) monitor

Wire-scanner (WS)

BPM reading, including filtering

twiss at appendix

### ΗT

- Beam1:
- BPLH.7R4.B1
- BPLV.A6R4.B1

- Beam2:
- BPLH.6R4.B2
  - BPLV.7R4.B2

IP1: H crossing IP5: V crossing

V

### ΗT

- Beam1:
- BPLH.7R4.B1
- BPLV.A6R4.B1

- Beam2:
- BPLH.6R4.B2
  - BPLV.7R4.B2

IP1: H crossing IP5: V crossing

Н

V

#### From T. Levens:

- New HT exact configuration not yet decided
- Trying to optimise positions to get largest amplitude of crabbing signal; this might require having multiple pickups, but baseline would still be 1 per plane
- Existing pickups resolution:
  - <100  $\mu$ m in turn by turn mode
  - For the CC <10 μm (thanks to averaging)</li>
  - Systematics may limit us

### Beam1

#### analytical formula MAD-X twiss



bunch length: 0.075m

14



Ċ.





R



bunch length: 0.075m

### R



bunch length: 0.075m

14



Ċ.





R






#### Beam2

#### analytical formula MAD-X twiss



#### bunch length: 0.075m

18



Ċ.

IP5

Beam2, ACFCA.AL5.B2, BPLV.7R4.B2 4 1400 1200 Pa 2 1000 irticle x [mm] 800 density 0 600 [AU] 400 -2 200 -4٥ 0.0 -0.10.1 z [m]

Beam2, ACFCA.AR1.B2, BPLH.6R4.B2

R









### Instrumentation reading

- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location
- V<sub>CC</sub>=1 MV (total), E<sub>inj</sub>=450 GeV, θ= 0.00222 mrad

#### Head Tail (HT) monitor

#### Wire-scanner (WS)

BPM reading, including filtering

twiss at appendix

#### Beam1

#### analytical formula MAD-X twiss



bunch length: 0.075m

R





R





#### Beam2

bunch length: 0.075m

R





#### analytical formula MAD-X twiss



R





### Instrumentation reading

- During CC commissioning, the cavities will be operated one at a time at injection energy, 450 GeV
- Following plots done showing expected instrument reading for 1 combined kick at CC location
- V<sub>CC</sub>=1 MV (total), E<sub>inj</sub>=450 GeV, θ= 0.00222 mrad

Head Tail (HT) monitor

Wire-scanner (WS)

#### BPM reading, including filtering

twiss at appendix

• CC effect: orbit corrector with z-dependent kick

- CC effect: orbit corrector with z-dependent kick
- Closed-orbit distortion approach: deviation of crab closed orbit with specific z [1]

- CC effect: orbit corrector with z-dependent kick
- Closed-orbit distortion approach: deviation of crab closed orbit with specific z [1]

$$x_{D_{cc}}(z,s) = \sqrt{\frac{\beta(s)}{\beta^*}} \cdot \frac{c \cdot \tan(\frac{\theta}{2})}{\omega} \cdot \sin\left(\frac{\omega z}{c}\right)$$
$$\cdot \frac{\cos(\Delta \varphi_1 - \pi Q)}{\cos(\Delta \varphi_0 - \pi Q)},$$

- CC effect: orbit corrector with z-dependent kick
- Closed-orbit distortion approach: deviation of crab closed orbit with specific z [1]

$$x_{D_{cc}}(z,s) = \sqrt{\frac{\beta(s)}{\beta^*}} \cdot \frac{c \cdot \tan(\frac{\theta}{2})}{\omega} \cdot \sin(\frac{\omega z}{c})$$
phase advance between  
CC and location s  
phase advance between  
CC and IP  
CC and IP

Iongitudinal coordinate of the particle with respect to the bunch centre

- CC effect: orbit corrector with z-dependent kick
- Closed-orbit distortion approach: deviation of crab closed orbit with specific z [1]

$$x_{D_{cc}}(z,s) = \sqrt{\frac{\beta(s)}{\beta^*}} \cdot \frac{c \cdot \tan(\frac{\theta}{2})}{\omega} \cdot \sin(\frac{\omega z}{c})$$
phase advance between  
CC and location s  
phase advance between  
CC and IP  
CC and IP

Iongitudinal coordinate of the particle with respect to the bunch centre

- CC effect: orbit corrector with z-dependent kick
- Closed-orbit distortion approach: deviation of crab closed orbit with specific z [1]

$$x_{D_{cc}}(z,s) = \sqrt{\frac{\beta(s)}{\beta^*}} \cdot \frac{c \cdot \tan(\frac{\theta}{2})}{\omega} \cdot \sin(\frac{\omega z}{c})$$
phase advance between  
CC and location s  
phase advance between  
CC and IP  
CC and IP

Iongitudinal coordinate of the particle with respect to the bunch centre

- CC effect: orbit corrector with z-dependent kick
- Closed-orbit distortion approach: deviation of crab closed orbit with specific z [1]

$$x_{D_{cc}}(z,s) = \sqrt{\frac{\beta(s)}{\beta^*}} \cdot \frac{c \cdot \tan(\frac{\theta}{2})}{\omega} \cdot \sin(\frac{\omega z}{c}) = \begin{array}{l} \text{longitudinal} \\ \text{coordinate of the} \\ \text{phase advance between} \\ \text{CC and location s} \\ \text{phase advance between} \\ \text{CC and location s} \\ \text{CC and IP} \end{array} \cdot \frac{\cos(\Delta \varphi_1 - \pi Q)}{\cos(\Delta \varphi_0 - \pi Q)}, \quad \begin{array}{l} \text{CC angular} \\ \text{frequency} \end{array}$$

 Assuming 2 CCs combined to 1 dipole kick, MAD-X gives orbit of particles at crest

# Crab dispersion, during SPS tests, May-Nov2018

 Crab dispersion measurement utilises all available BPMs

All available BPMs should be utilised in HL-LHC as well



From L. Carver's presentation

#### LHC BPMs

- Due to BPM filtering, 'time normalisation'\*, BPMs will only see part of the bunch
- Multiply MAD-X BPM reading with a factor to obtain what will be read during measurements
- Assuming bunch length of 0.075 m (0.25ns, RMS), this factor has been calculated\*\*\* to be 0.821
- New pickups: <u>draft</u> of the installation request
- We currently have these BPMs equipped with DOROS. But this may well change by HL [document from Marek]

| Existing LHC BPM<br>system | <b>Resolution**</b> |
|----------------------------|---------------------|
| turn-by-turn               | Order of 100µm      |
| average orbit              | Order of 1µm        |
| accuracy                   | Order of 50µm       |

\*\*From Michal Krupa

\*A. Boccardi: The zero crossings are used to generate two pulses. The position (amplitude's ratio) is encoded in the time distance between those 2 pulses that are transmitted optically to the surface)

32

<sup>\*\*\*</sup>For code see appendix, thanks to Michele Charla'

#### BPM Reading Beam1

analytical formula MAD-X twiss



#### BPM Reading Beam1

analytical formula MAD-X twiss



### Calculating BPM-phase reading when only one set of CCs is ON (V<sub>set</sub>=2\*0.5=1 MV)



#### **BPM reading with CC-phase**

| Existing LHC BPM<br>system | <b>Resolution*</b> |
|----------------------------|--------------------|
| turn-by-turn               | Order of 100µm     |
| average orbit              | Order of 1µm       |
| accuracy                   | Order of 50µm      |

\*From Michal Krupa



#### **BPM reading with CC-phase**

| Existing LHC BPM<br>system | <b>Resolution*</b> |
|----------------------------|--------------------|
| turn-by-turn               | Order of 100µm     |
| average orbit              | Order of 1µm       |
| accuracy                   | Order of 50µm      |

\*From Michal Krupa



### Next steps

- Study reading at BSRT and BGV for different CC phase
- Simulations will be performed for 9 cm bunch-length (assuming q-Gaussian bunches [link]) and for ramping, squeeze, and flat top optics
- Study minimum detectable non-closure when crab-bump is closed with available instrumentation (to be done at collision energy)
  - Possible instrument: existing LHC BPMs, 0.8 factor suppressed reading (filtering)
  - Can we have **2** HT monitors/beam/plane, 90deg phase-advance?
- Study smaller emittance; it would enhance crabbing effect
# Appendix

#### Beam1

#### CCs

| NAME             | S         | BETX     | BETY     | ALFX    | ALFY    | MUX     | MUY     | MUX<br>[dea] | MUY<br>[dea] |
|------------------|-----------|----------|----------|---------|---------|---------|---------|--------------|--------------|
| ACFCA.AR1<br>.B1 | 154.817   | 82.90706 | 279.5391 | 1.14023 | -0.4697 | 0.32193 | 0.29135 | 2.02274      | 12.7092      |
| ACFCA.BR1        | 155.867   | 80.54316 | 280.5304 | 1.1111  | -0.4743 | 0.32398 | 0.29195 | 2.03562      | 12.7902      |
| ACFCA.BL5<br>B1  | 13169.602 | 283.7912 | 72.54292 | 0.4940  | -1.0096 | 30.6811 | 29.6248 | 192.775      | 1211.24      |
| ACFCA.AL5        | 13170.652 | 282.7585 | 74.69381 | 0.4894  | -1.0388 | 30.6817 | 29.6271 | 192.779      | 1211.26      |
| ACFCA.AR5<br>.B1 | 13484.106 | 82.76328 | 279.4378 | 1.1404  | -0.4699 | 31.2973 | 30.2478 | 196.646      | 1235.56      |
| ACFCA.BR5        | 13485.156 | 80.39898 | 280.4294 | 1.11127 | -0.4744 | 31.2993 | 30.2484 | 196.659      | 1235.64      |
| ACFCA.BL1<br>B1  | 26499.196 | 283.2258 | 72.56884 | 0.49111 | -1.0103 | 61.9758 | 59.9633 | 389.405      | 2446.70      |
| ACFCA.AL1        | 26500.246 | 282.1993 | 74.72125 | 0.4865  | -1.0395 | 61.9763 | 59.9656 | 389.409      | 2446.72      |

#### HT WS

| NAME             | S          | BETX     | BETY     | ALFX    | ALFY    | MUX     | MUY     | MUX<br>[dea] | MUY<br>[dea] |
|------------------|------------|----------|----------|---------|---------|---------|---------|--------------|--------------|
| BPLH.<br>7R4 B1  | 10174.9570 | 544.9718 | 51.52153 | 5.429   | 1.08101 | 23.5490 | 22.3391 | 147.962      | 140.360      |
| BPLV.A6R4<br>.B1 | 10134.7570 | 253.0857 | 401.1932 | -4.6406 | 7.33674 | 23.5341 | 22.2874 | 147.869      | 140.036      |
| BWS.<br>5R4 B1   | 10081.8810 | 197.6089 | 402.2346 | 0.01327 | -0.7261 | 23.4927 | 22.2682 | 147.609      | 139.915      |

#### Beam2

#### CCs

| NAME             | S          | BETX     | BETY     | ALFX    | ALFY   | MUX     | MUY     | MUX<br>[dea] | MUY<br>[dea] |
|------------------|------------|----------|----------|---------|--------|---------|---------|--------------|--------------|
| ACFCA.AR1<br>.B2 | 158.637    | 283.2259 | 74.70318 | -0.4882 | 1.0386 | 0.29376 | 0.32943 | 1.84574      | 2.06986      |
| ACFCA.BR1<br>.B2 | 159.687    | 284.2560 | 72.55276 | -0.4928 | 1.0094 | 0.29434 | 0.3317  | 1.84939      | 2.08413      |
| ACFCA.BL5<br>B2  | 13173.7269 | 80.80629 | 280.3141 | -1.1166 | 0.4721 | 30.6973 | 29.6853 | 192.877      | 186.518      |
| ACFCA.AL5        | 13174.7769 | 83.18196 | 279.3275 | -1.1458 | 0.4675 | 30.6994 | 29.6859 | 192.890      | 186.522      |
| ACFCA.AR5        | 13488.2309 | 282.8328 | 74.85547 | -0.4845 | 1.0405 | 31.3145 | 30.3065 | 196.755      | 190.421      |
| ACFCA.BR5        | 13489.2809 | 283.8552 | 72.70092 | -0.4891 | 1.0113 | 31.3151 | 30.3088 | 196.758      | 190.435      |
| ACFCA.BL1<br>B2  | 26503.0162 | 80.57439 | 280.3297 | -1.1151 | 0.4741 | 61.9464 | 60.0030 | 29.2210      | 17.0102      |
| ACFCA.AL1        | 26504.0662 | 82.94689 | 279.3388 | -1.1443 | 0.4695 | 61.9485 | 60.0036 | 29.2339      | 17.0139      |

#### HT WS

| NAME            | S          | BETX     | BETY     | ALFX    | ALFY    | MUX     | MUY     | MUX<br>[dea] | MUY<br>[dea] |
|-----------------|------------|----------|----------|---------|---------|---------|---------|--------------|--------------|
| BPLH.<br>6R4.B2 | 10134.1093 | 395.7512 | 269.4649 | 5.31322 | -3.8972 | 23.4211 | 22.6449 | 147.159      | 142.282      |
| BPLV.<br>7R4.B2 | 10175.9093 | 123.4477 | 483.0553 | 0.18321 | 5.46555 | 23.4559 | 22.6608 | 147.378      | 142.382      |
| BWS.<br>51.4 B2 | 9912.28138 | 196.9343 | 451.7253 | -0.0139 | 0.95339 | 23.2878 | 22.5265 | 146.321      | 141.538      |

## How do the LHC BPMs work\*

- LHC BPMs work differently wrt SPS MOPOS
- LHC BPMs first approximation: average over bunch distribution
- BPM measures [int I(s) \* X(s) ds] / [int I(s) ds] ; int: integral, I(s): bunch intensity (depends on longitudinal position s), X(s): transverse bunch position (depends on s)
- This would be completely true if the low pass filter cut-off frequency was 0MHz, instead it is 70MHz. Still not too far from 0MHz wrt to 400MHz of CC

\*thanks to M. Carla' for discussion

## **BPM filter reduction factor**

### From Michele Carla':

- Simple example with CC on crest, bunch length of "BL"ns (4 sigma)
- Position of proton in middle of bunch, therefore perfectly on-crest
- Assuming the BPM is averaging over the entire bunch.

```
bunch_length = BL/4 #ns
cc_freq = 0.4 #GHz
count = 1000
s = np.linspace(-4.*bunch_length, 4.*bunch_length, count)
I = np.exp(-s*s / (2 * bunch_length * bunch_length))
X = np.cos(s * cc_freq * 2 * np.pi)
print np.sum(I * X) / np.sum(I)
```

I(s) : bunch intensity (depends on the longitudinal position s)X(s) : transverse bunch position (depends on s)

### Phase advance calculation

