DSL workshop

TTree::Draw

- Some were not aware of this DSL $\textcircled{\odot}$
- Some not aware of its power
- Some liked the conciseness and feature set (collection handling)
- Some reported that they knew of at least one analysis that was carried entirely in TTree::Draw ..

RDataFrame

- Some read it as 'R language DataFrame'
- was well received (and at least one DSL implementation is using RDataFrame as the underlying engine – Andrea Rizzi)
- need/interest of having RDataFrame support systematics. For example introduce a node that has a wiggle function that end up duplicating the further nodes and ends with multiple 'results'.
 - Enrico said:
 - df = CreateDataFrame()
 - for s in sistematics:

ApplyTheWholeGraph(df.Define("b_with_syst", some_func_of_s(s));

• Really need strong collection support ...

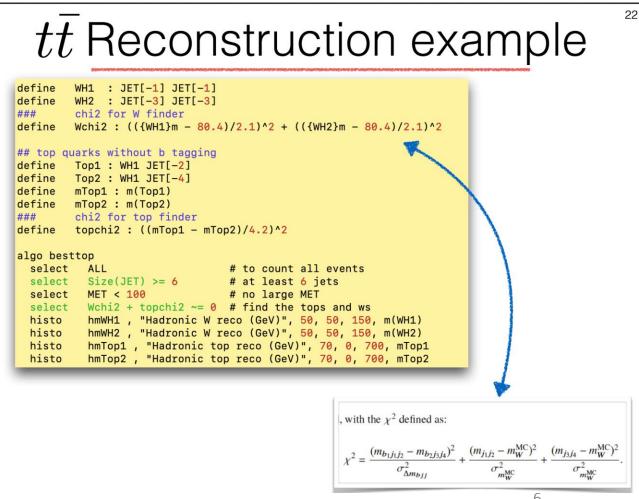
Workshop

- Group of people interested a priori by DSL.
- Hopes for DSL Basic requirements:
 - Public
 - Complete
 - Easily learned
 - Demonstrably correct

Desirable features:

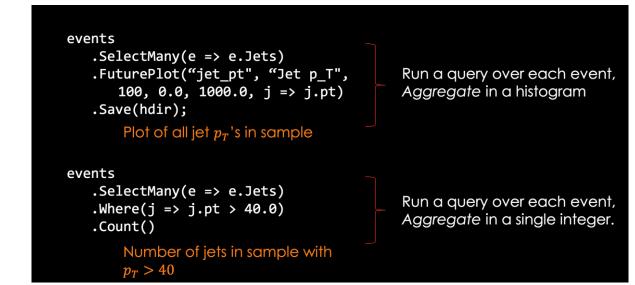
- Self-contained
- General programming language-independent
- Analysis framework-independent

"Options"

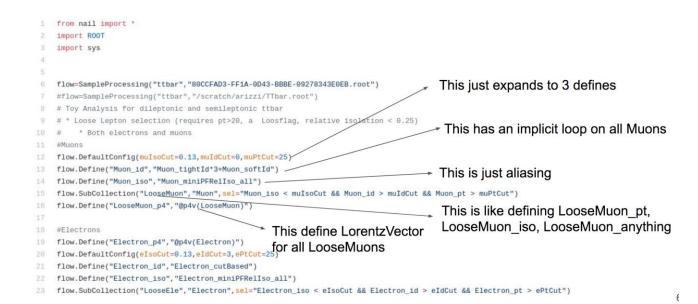

- Related to the "Les Houches Analysis Description Accord":
 - Ihada2rivet
 - adl2tnm
 - Ihada2checkmate
 - CutLang

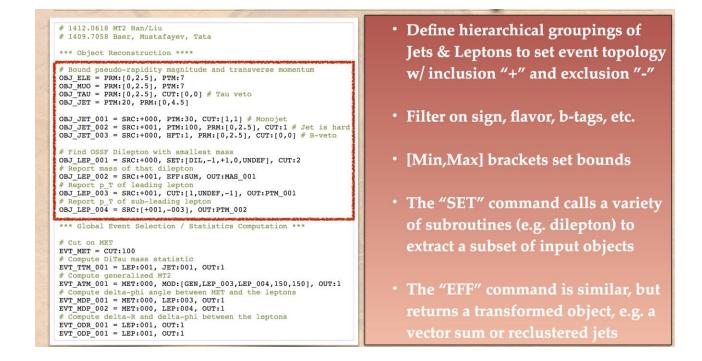

```
object muonsVeto
  take Muon
  select pt > 5
  select |eta| < 2.4
  select softId == 1
  select miniPFRelIso_all < 0.2
  select |dxy| < 0.2
  select |dz| < 0.5
# jets - no photon
object AK4jetsNopho
  take AK4jets j
  reject dR(j, photons) < 0.4 and
      photons.pt/j.pt [] 0.5 2.0</pre>
```

CutLang v2


- yacc, lexx, ROOT LorentzVector and Histograms
- https://indico.cern.ch/event/7692 63/contributions/3406040/attach ments/1838631/3014722/ADLCutL angrazorboost.pdf

Others


Ihada2rivet


- Proof of concept for automatic ADL interpretation and code generation
- Creates 'rivet' code.
- LINQ
 - SQL + C#
- YADL / FAST
 - YAML (superset of json with object description, anchors, references, etc..)
 - Python, uproot, numexpr

DiMu_controlRegion:
<pre>weights: {nominal: weight}</pre>
selection:
All:
<pre>- {reduce: 0, formula: Muon_pt > 30}</pre>
- leadJet_pt > 100
- All:
- DiMuon_mass > 60
- DiMuon_mass < 120
- Any:
- nCleanedJet == 1
- DiJet_mass < 500
- DiJet_deta < 2

- NAIL, Andrea Rizzi
 - Python
 - RDataFrame under the hood
 - Plan for ML interface
- AEACuS & RHADAManTHUS

- How to build your own language tutorial
- CERN Analysis Preservation ... can be done for ADL based analysis

THE CONVERSATION

- There is a huge amount of activity around Analysis and Query Languages
 - See HSF Data Analysis Forum, CHEP, ACAT, IRIS-HEP
- Think Big
 - The context for Run 3 and Run 4 is much bigger than we are used to
 - Can we do a full analysis with a small team?
 - Scalability?
 - An Analysis System, not just an ADL!