The status of Particle Flow Algorithm in IPNL

Bo Li

Institut de Physique Nucléaire de Lyon

SDHCAL meeting June 19, 2019

Outline

- 1 Introduction: PFA and ILD
- 2 The particle flow algorithm
- Summary

Outline

- 1 Introduction: PFA and ILD
- The particle flow algorithm
- Summary

Particle flow calorimetry

- Particle flow calorimetry: attempt to reconstruct visible final state particles from the information recorded by detector.
- Jet energy resolution at ILC: $\sigma_E/E=3\sim 4\%$ in the energy range from 50 to 500 GeV [1].
- Algorithms: Pandora [2], Arbor [3], Garlic [4].

International Large Detector [5]

Semi-Digital HCAL

Two high granularity HCAL options at ILD

- Analog HCAL (AHCAL)
- Semi-Digital HCAL (SDHCAL [6])

SDHCAL prototype

- 48 layers, $6\lambda_I$
- GRPC $(1 \times 1m^2)$
- Pad: $1 \times 1 \text{ cm}^2$
- Thresholds(pC):0.11, 5, 15
- Power-pulsing
- Self-supporting structure.

Outline

- Introduction: PFA and ILD
- 2 The particle flow algorithm
- Summary

Design of algorithm

Jet composition

• Charged particles: $\sim 60\%$

• Photons: $\sim 30\%$

• Neutral hadrons: $\sim 10\%$

Clustering

- Arbor [3]: use it as the algorithm for clustering the hits in calorimeter with tree topology.
- Nearby hits are linked by connector. The nearby hits are searched by the NeighborSearch (and NearbySearch) in mlpack [7].
- Reference direction

$$\mathbf{V}_r = w_b \times \sum_i \mathbf{v}_i^b + w_f \times \sum_j \mathbf{v}_j^f \tag{1}$$

Connector order

$$\kappa = \theta^{p_{\theta}} \times d^{p_d} \tag{2}$$

- Ambiguity: connector order at small angle, e.g., $\theta = 0$.
- Hits which are not clustered are dealt with by DBCAN in mlpack.
- To restrain the error in clustering, the parameters are set to avoid forming big clusters.

Clustering (continued)

Cluster merging

- For cluster merging, the geometrical properties of cluster are utilized; The order of cluster connection can be define by such variables:
 - Distances: COG distance, closest distance approach;
 - Angles: cluster axis, direction between clusters.
- The energy criteria for cluster merging

$$\chi = (E_c - p_t)/\sigma_{E_c}$$

 $ightharpoonup \sigma_{E_c}$

★ ECAL: $0.15/\sqrt{E_c}$ for photons.

★ HCAL: $0.55/\sqrt{E_c}$ for hadrons.

- ► ECAL energy resolution for hadrons ?
- Cluster merging is under optimisation.

Figure: Merging between charged and neutral cluster.

Distance of clusters axes

- Cluster axis is computed by PCA (Principal Component Analysis).
- Distance: In 3D space, the axes of two clusters can be reprented by

$$\mathbf{y}_i = \mathbf{x}_i + \lambda_i \mathbf{b}_i \tag{3}$$

where i = 1, 2. The distance of the two lines is given by

$$d = |\boldsymbol{n} \cdot (\boldsymbol{x}_2 - \boldsymbol{x}_1)|, \boldsymbol{n} = \frac{\boldsymbol{b}_1 \times \boldsymbol{b}_2}{|\boldsymbol{b}_1 \times \boldsymbol{b}_2|}$$
(4)

The nearest point to axis 2 on axis 1 is given by

$$p_1 = x_1 + \frac{(x_2 - x_1) \cdot n_2}{d_1 \cdot n_2} d_1 \tag{5}$$

in which, $n_2 = d_1 \times (d_2 \times d_1)$ To compute the nearest point on the line 2, just exchange the index 1 and 2 in Eq.(5).

Current issues in cluster merging

(a) Axis issue

(b) PID issue

- To improve the axis computation, we can re-connect the hits of a cluster.
- Further, it seems that a lot of small charged segments ($\lesssim 1 \text{GeV}$) are not merged to the main clusters, probaly due to axis computation issue. For small segment, its axis is not well defined.

PFO creation

- Track-cluster assocaition: position, direction and energy are considered.
- PID
 - $ightharpoonup \gamma$, π^{\pm} , neutal hadron
 - ▶ Shower profile, energy deposition and track information are used.

Figure: The reconstructed PFOs in an event.

Results

- JER ($\frac{\mathsf{RMS}_{90}(\mathsf{E}_j)}{\mathsf{Mean}_{90}(\mathsf{E}_j)}$, $|\cos\theta_q|<0.7$) at 91.2 GeV: 4.2%; RMS: 4.24 GeV.
- Pandora: 4.1%; Perfect PFA: 3.25%

Error estimation

stage	error contribution
Clustering	$\sim 0.05\%$
Nearby hits merging	$\sim 0.15\%$
Cluster merging	$\sim 0.50\%$
Track-cluster association and PFO creation	$\sim 0.30\%$

The code

- Algorithms developed by using the PandoraSDK [8]
 - Multi-algorithm approach
 - ▶ Objects: track, hit, cluster, PFO
- ILCSoft (https://github.com/iLCSoft)
 - Marlin [9]
 - Tracking
 - Calorimeter digitizers (SimDigital for SDHCAL)
 - Geometry: ILD detector mode implemented by Icgeo, which is based on DD4hep [10]
 - LCCalibration: automated energy calibration for calorimeters at ILC (https://github.com/iLCSoft/LCCalibration).
- mlpack [7]: NeighborSearch, DBSCAN.
- \rightarrow For the Algorithm of Particle Reconstruction at ILC developed in Lyon, we'd like to name it **APRIL**.

Outline

- 1 Introduction: PFA and ILD
- 2 The particle flow algorithm
- Summary

Summary

- A particle flow algorithm is developed in the framework of up-to-date ILCSoft.
- The current result is quite close to our expectation.
- We proposed a cluster merging approach by constructing the cluster connection order from the computation of cluster geometrical properties.
- Plans
 - For higher energy: reclustering.
 - ▶ A little bit far future: machine learning for PFA.

References I

[1] J. S. Marshall and M. A. Thomson. Pandora Particle Flow Algorithm.

In Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013): Paris, France, April 22-25, 2013, pages 305–315, 2013.

- [2] M. A. Thomson. Particle Flow Calorimetry and the PandoraPFA Algorithm. Nucl. Instrum. Meth., A611:25–40, 2009.
- [3] Manqi Ruan and Henri Videau.

 Arbor, a new approach of the Particle Flow Algorithm.

 In Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013): Paris, France, April 22-25, 2013, pages 316–324, 2013.

References II

- [4] D. Jeans, J. C. Brient, and M. Reinhard. GARLIC: GAmma Reconstruction at a Linear Collider experiment. JINST, 7:P06003, 2012.
- [5] Halina Abramowicz et al.
 The International Linear Collider Technical Design Report Volume 4: Detectors.

 2013.
- [6] V. Buridon et al. First results of the CALICE SDHCAL technological prototype. JINST, 11(04):P04001, 2016.
- [7] Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yannis Mentekidis, Sumedh Ghaisas, and Shangtong Zhang. mlpack 3: a fast, flexible machine learning library. Journal of Open Source Software, 3:726, 2018.

References III

- [8] J. S. Marshall and M. A. Thomson. The Pandora Software Development Kit for Pattern Recognition. Eur. Phys. J., C75(9):439, 2015.
- [9] F. Gaede. Marlin and LCCD: Software tools for the ILC. Nucl. Instrum. Meth., A559:177–180, 2006.
- [10] Markus Frank, F. Gaede, C. Grefe, and P. Mato. DD4hep: A Detector Description Toolkit for High Energy Physics Experiments.
 - J. Phys. Conf. Ser., 513:022010, 2014.