Experimental fingerprints of shape coexistence

Magda Zielińska, CEA Saclay

What observables can be used to conclude on shape coexistence?

- level energies
- transition probabilities
- transfer-reaction cross sections
- quadrupole moments: measure of the charge distribution in ^a given state
- charge radii
- complete sets of E2 matrix elements: possibility to determine quadrupole invariants and level mixing
- monopole transition strengths

Level energies

• can be used to conclude on shape coexistence if other data not availble (e.g. for very exotic nuclei)

• have to be put in some context – neighbouring isotopes, other states

K. Heyde and J. Wood, Rev. Mod. Phys. 83, 1467 (2011)

- gain from correlation offsetting the shell gap increases towards mid shell
- characteristic parabolic behaviour of intruder states energies

Level energies – systematics of isotopic chains

• parabolic behaviour experimentally observed for nuclei with $A > 100$, less evident in lighter nuclei

data compilation: P. Garrett, MZ, E. Clément, Prog. Part. Nucl. Phys. 124, 103931 (2022)

Level energies – moments of inertia

• $72,74,76$ Se: presence of bands built on low-lying 0^+ states

• ⁷⁶Se: different transition strengths in the gsb and the band built on the 0^+_2 state: $B(E2; 2^+_3 \rightarrow 0^+_2) = 31(5)$ W.u. versus $B(E2; 2^+_1 \rightarrow 0^+_1) = 44(1)$ W.u.;
(S. Mukbonadhyay at al. BBC 99, 014212 (2019)) (S. Mukhopadhyay *et al.*, PRC 99, ⁰¹⁴³¹³ (2019))

• 72,76 Se: negative quadrupole moments of 2^+_1 states

(J. Henderson *et al.*, PRL 121, ⁰⁸²⁵⁰² (2018); A.E. Kavka, NPA 593, ¹⁷⁷ (1995))

 \bullet ^{68,70}Se: no excited 0^+ states known, but in particular for ⁶⁸Se very different moment of inertiain the ground state band (S.M. Fischer *et al.*, PRL 84, ⁴⁰⁶⁴(2000))

 \rightarrow conclusion on shape coex-
 \rightarrow conclusion on shape coexistence in 68,70 Se and different shapes of their ground stateswith respect to heavier Se

Level energies – rotational bands in less deformed nuclei

• it is much easier to find deformed configurations in nuclei with nearly spherical ground states, than vice versa!

L. Iskra *et al.*, EPL 117, ¹²⁰⁰¹ (2017)

Finding spherical states in deformed nuclei – example of ³²**Mg**

K. Wimmer *et al.*, PRL 105, ²⁵²⁵⁰¹ (2010)

- level spin confirmed by proton angular distributions
- \bullet excitation energy precisely measured from γ -ray decay in coincidence with protons

Information from transfer reactions

• identfication of 4p-4h and 8p-8h structures in 40 Ca (α -particle transfer); admixture of the 4p-4h configuration to 8p-8h states

• proton domination in the wave functions of the excited 0^+ states in 112,114,116,118 Sn EXCITATION ENERGY (MeV)

Alpha-decay hindrance

• similar type of information as from transfer reactions in lighter nuclei

- ground states of Pb nuclei are spherical (experimentally confirmed by charge radii measurements) \rightarrow the same is true for ground states of Hg nuclei, while their excited
atates are deminated by the 2p.2b configuration states are dominated by the 2p-2h configuration
- triple shape coexistence in 186 Pb was deduced using this method

compilation: K. Heyde and J.L. Wood, RMP 83, 1467 (2011) Nature 405, 431 (2000)

A. Andreyev *et al.*,

Transition probabilities in

⁹⁶,⁹⁸**Sr** E. Clément, MZ et al, PRL 116, ⁰²²⁷⁰¹ (2016)

Coulomb excitation at REX-ISOLDE: 96 Sr on 109 Ag, 120 Sn, 98 Sr on 60 Ni, 208 Pb

´ 10th Workshop on Quantum Phase Transitions in Nuclei and Many-Body Systems, Dubrovnik, Croatia, July 11-15, 2022, - p. ⁹

Laser spectroscopy data

• precise measurements of charge radii, spectroscopic quadrupole moments, g factors for long-lived states

Example of ^{79}Zn :

- large isomer shift for the $1/2^+$, 1-MeV isomer in ⁷⁹Zn
- combined with $\beta_2 \approx 0.14$ deduced from B(E2) values in 78,80 Zn, results in $\beta_2 \approx$ 0.22 for the isomer
- 1p-2h neutron configurationdetermined from the measured g factor
- first evidence for shape coexistence in the immediate vicinity of 78 Ni

X.F. Yang *et al.*, PRL 116, ¹⁸²⁵⁰² (2016)

Quadrupole moments of excited states

 E. Clément *et al.* Phys. Rev. C75, 054313 (2007)

- prolate-oblate shape coexistence in $74,76$ Kr
- first Coulomb-excitation measurement of spectroscopic quadrupole moments using ^a radioactive beam0.6exp. 4^{-}_{1} \rightarrow 2

• spectroscopic quadrupole moments are zero for J=0,1/2 – complication for even-even nuclei

Quadrupole sum rules

 D. Cline, Ann. Rev. Nucl. Part. Sci. ³⁶ (1986) ⁶⁸³ K. Kumar, PRL 28 (1972) 249

• electromagnetic multipole operators are spherical tensors – products of suchoperators coupled to angular momentum 0 are rotationally invariant

• in the intrinsic frame of the nucleus, the E2 operator may be expressedusing two parameters Q and δ related to charge distribution: $E(2,0) = Q \cos \delta$ $E(2, 2) = E(2, -2) = \frac{Q}{\sqrt{2}} \sin \delta$ $E(2, 1) = E(2, -1) = 0$ $\frac{\langle \mathsf{Q}^2 \rangle}{\sqrt{5}} =$ $\hat{\rho}= \langle \mathsf{i} | \left[\mathsf{E2} \times \mathsf{E2} \right]^{\mathsf{0}} | \mathsf{i} \rangle = \frac{1}{\sqrt{(2\mathsf{l_i} + 1)}} \sum_{\mathsf{t}} \langle \mathsf{i} \| \mathsf{E2} \| \mathsf{t} \rangle \langle \mathsf{t} \| \mathsf{E2} \| \mathsf{i} \rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \ 1_{\mathsf{i}} & \mathsf{l_i} & \mathsf{l_t} \end{array} \right\}$ **0**0⁺ 2^{2} ₁ **0 +2 2 +24** 4^{+}_{1} 2^{+}_{3} $\mathbf{0}_{1}^{+}$ **2** 2^{2} ₁ **0 +22 +24** 4^{+}_{1} 2^{+}_{3}

 $\langle Q^2 \rangle$: measure of the overall deformation;

for the ground state – extension of B(E2; 0⁺ \rightarrow 2⁺) = ((3/4 π)eZR $_0^2$)² β_2^2

Contributions to $\langle Q^2 \rangle$ in 100 Mo: K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

Quadrupole sum rules: triaxiality

 D. Cline, Ann. Rev. Nucl. Part. Sci. ³⁶ (1986) 683K. Kumar, PRL 28 (1972) 249

 $\langle \cos 3\delta \rangle$: measure of triaxiality

• relative signs of E2 matrix elements are needed: can we get them experimentally?

Contributions to $\langle Q^3\cos3\delta\rangle$ in 100 Mo: K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

Relative signs of E2 matrix elements

• Coulomb-excitation cross section are sensitive to relative signs of MEs: result of interference between single-step and multi-step amplitudes

- excitation amplitude of state A: a_A \sim $\langle A||E2||g.s.\rangle + \langle B||E2||g.s.\rangle\langle A||E2||B\rangle$
- excitation probability (\sim a_A) contains interference terms $\langle A||E2||g.s.\rangle\langle B||E2||g.s.\rangle\langle A||E2||B\rangle$

• negative $\langle 2^+_1 \|\mathsf{E} 2\| 2^+_2 \rangle$ (solid lines): much higher population of 2^+_2 at high CM angles

• sign of ^a product of matrix elements is an observable

Shape evolution of ⁹⁶−¹⁰⁰**Mo**

 MZ *et al.*, Nucl. Phys. ^A ⁷¹² (2002) ³ K. Wrzosek-Lipska *et al.*, PRC ⁸⁶ (2012) ⁰⁶⁴³⁰⁵

- 72,74,76 Ge, 96 Mo: coexistence of the deformed ground state with a spherical 0_2^+
- ground states of the Mo isotopes triaxial, deformation of 0^+_2 increasing with N
- shape coexistence in ⁹⁸Mo manifested in a different triaxiality of 0^+_1 and 0^+_2

Quadrupole invariants – example of ⁷²,⁷⁶**Ge**

A.D. Ayangeakaa *et al.*, PRL 123, ¹⁰²⁵⁰¹ (2019)

PLB 754, 254 (2016)

 \bullet 72 Ge: much higher number of transitions observed in a new measurement

- \rightarrow slight change of the deduced invariants due to extra states entering the sum
- observed shapes of $0^+_{1,2}$ states in ⁷²Ge are very similar in terms of β and γ
- can it still be called shape coexistence?

Two-state mixing model

• we assume that physical states are linear combinations of pure spherical and deformedconfigurations:

| $|I_1^+\rangle$ = +cos $\theta_I \times |I_d^+\rangle$ + sin $\theta_I \times |I_s^+\rangle$ | $|I_2^+\rangle = -\sin\theta_I \times |I_d^+\rangle + \cos\theta_I \times |I_s^+\rangle$

with transitions between the <mark>pure spherical and deformed</mark> states forbidden:

 $\langle 2_d^+ \|E2\| 0_s^+ \rangle = \langle 2_d^+ \|E2\| 2_s^+ \rangle = \langle 2_s^+ \|E2\| 0_d^+ \rangle = 0$

• the measured matrix elements can be expressed in terms of the "<mark>pure" matrix elements</mark> and the mixing angles:

```
\langle 2^+_1 \|E2\| 0^+_1 \rangle =\sin \theta_0 \sin \theta_2 \langle 2^+_s || E2 || 0^+_s \rangle + \cos \theta_0 \cos \theta_2 \langle 2^+_d || E2 || 0^+_d \rangle\langle 2^+_1 \|E2\| 0^+_2 \rangle =\cos\theta_0 \sin\theta_2 \langle 2^+_s \|E2\| 0^+_s \rangle - \sin\theta_0 \cos\theta_2 \langle 2^+_d \|E2\| 0^+_d \rangle\langle 2^+_2 \|E2\| 0^+_1 \rangle =\sin \theta_0 \cos \theta_2 \langle 2^+_s \| E2\| 0^+_s \rangle \cdot \cos \theta_0 \sin \theta_2 \langle 2^+_d \| E2\| 0^+_d \rangle\langle 2\frac{+}{2} || E2 || 0\frac{+}{2} \rangle =\cos\theta_0 \cos\theta_2 \langle 2_s^+ \|E2\| 0_s^+ \rangle + \sin\theta_0 \sin\theta_2 \langle 2_d^+ \|E2\| 0_d^+ \rangle
```


Dependence on additional assumptions

• two-state mixing parameters for $180,182,184,186,188$ Hg derived under three different assumptions:

• large difference in resulting Q_t values; Q_t for the less deformed configuration in variant B approaches values for the more deformed one in variant C

A) Q_t values the same for all four Hg isotopes and constant within bandsB) Q_t evolve within bands according to moments of inertia

C) Q_t calculated independently for each mass and spin

E0 strengths, shape coexistence and mixing

- E0 transitions are sensitive to the changes in the nuclear charge-squared radii
- their strengths depends on the mixing of configurations that have different mean-squarecharge radii:

$$
\rho^{2}(E0) = \frac{Z^{2}}{R^{4}} \cos^{2} \theta_{0} \sin^{2} \theta_{0} (\langle r^{2} \rangle_{A} - \langle r^{2} \rangle_{B})^{2}
$$

= $\left(\frac{3Z}{4\pi}\right)^{2} \cos^{2}(\theta_{0}) \sin^{2}(\theta_{0}) \cdot \left[(\beta_{1}^{2} - \beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}} (\beta_{1}^{3} \cos \gamma_{1} - \beta_{2}^{3} \cos \gamma_{2}) \right]^{2}$
J.L. Wood *et al.*, NPA 651, 323 (1999)

Example of ⁴²Ca: K. Hadyńska-Klęk *et al.*, PRC 97 (2018) 024326 (Coulomb excitation), J.L. Wood *et al.*, NPA 651, ³²³ (1999) (E0)

- good agreement of the $\cos^2(\theta_0)$ values obtained with the two methods
- $\cos^2(\theta_2)$ < 0.5: two-state mixing model cannot be applied to 2⁺ states in ⁴²Ca

Population of the deformed structure in one-neutron transfer

C. Ellegaard *et al.*, Phys. Lett. 40B (1972) ⁶⁴¹

- equal population of 2^+_1 and 2^+_2 in ⁴¹Ca(d,p)⁴²Ca the same admixture of $(f_{7/2})^2$, while the <mark>quadrupole moments are very different</mark>!
- \rightarrow the remaining admixtures to the 2_1^+ and 2_2^+ wave functions must be different \rightarrow
another configuration must enter the mixing another configuration must enter the mixing

Three-state mixing

- three-state mixing provides good reproduction of B(E2) values and transfer cross sections for $^{30,32}\mathsf{Mg}$ (A. Machiavelli, Phys. Scr. 92, 064001 (2017))
- future challenge: identification of the predominantly 0p-0h 0^+ state in 32 Mg that would confirm this scenario (two $(0,2)^+$ states observed recently in a knockout study, N. Kitamura *et al.*, PLB 221, ¹³⁶⁶⁸² (2021))

E. Ideguchi *et al.*, PRL 128, 252501 (2022)

• destructive interference in three-state mixing proposed as the reasonfor an anomalously low $\rho^2(\textsf{E0};\,textsf{0}_3^+\rightarrow\textsf{0}_1^+)$ value

Take-away message

- multiple observables can point to shape coexistence in more or less direct way
- they can be measured using various experimental techniques, each of them having different limitations
- use of complementary probes improves our understanding and provides necessary consistency checks