Experimental fingerprints of shape coexistence

Magda Zielińska, CEA Saclay

What observables can be used to conclude on shape coexistence?

- level energies
- transition probabilities
- transfer-reaction cross sections
- quadrupole moments: measure of the charge distribution in a given state
- charge radii
- complete sets of E2 matrix elements: possibility to determine quadrupole invariants and level mixing
- monopole transition strengths

Level energies

• can be used to conclude on shape coexistence if other data not available (e.g. for very exotic nuclei)

• have to be put in some context – neighbouring isotopes, other states

K. Heyde and J. Wood, Rev. Mod. Phys. 83, 1467 (2011)

- gain from correlation offsetting the shell gap increases towards mid shell
- characteristic parabolic behaviour of intruder states energies

Level energies – systematics of isotopic chains

 parabolic behaviour experimentally observed for nuclei with A>100, less evident in lighter nuclei

data compilation: P. Garrett, MZ, E. Clément, Prog. Part. Nucl. Phys. 124, 103931 (2022)

Level energies – moments of inertia

• ^{72,74,76}Se: presence of bands built on low-lying 0⁺ states

• ⁷⁶Se: different transition strengths in the gsb and the band built on the 0_2^+ state: B(E2; $2_3^+ \rightarrow 0_2^+$) = 31(5) W.u. versus B(E2; $2_1^+ \rightarrow 0_1^+$)) = 44(1) W.u.; (S. Mukhopadhyay *et al.*, PRC 99, 014313 (2019))

• 72,76 Se: negative quadrupole moments of 2_1^+ states

(J. Henderson et al., PRL 121, 082502 (2018); A.E. Kavka, NPA 593, 177 (1995))

• ^{68,70}Se: no excited 0⁺ states known, but in particular for ⁶⁸Se very different moment of inertia in the ground state band (S.M. Fischer *et al.*, PRL 84, 4064 (2000))

 \rightarrow conclusion on shape coexistence in ^{68,70}Se and different shapes of their ground states with respect to heavier Se

Level energies – rotational bands in less deformed nuclei

• it is much easier to find deformed configurations in nuclei with nearly spherical ground states, than vice versa!

L. Iskra *et al.*, EPL 117, 12001 (2017)

Finding spherical states in deformed nuclei – example of ³²Mg

K. Wimmer et al., PRL 105, 252501 (2010)

- level spin confirmed by proton angular distributions
- excitation energy precisely measured from γ -ray decay in coincidence with protons

Information from transfer reactions

- identification of 4p-4h and 8p-8h structures in ⁴⁰Ca (α -particle transfer); admixture of the 4p-4h configuration to 8p-8h states
- proton domination in the wave functions of the excited 0⁺ states in ^{112,114,116,118}Sn EXCITATION ENERGY (MeV)

Alpha-decay hindrance

• similar type of information as from transfer reactions in lighter nuclei

- ground states of Pb nuclei are spherical (experimentally confirmed by charge radii measurements) \rightarrow the same is true for ground states of Hg nuclei, while their excited states are dominated by the 2p-2h configuration
- triple shape coexistence in ¹⁸⁶Pb was deduced using this method

compilation: K. Heyde and J.L. Wood, RMP 83, 1467 (2011)

A. Andreyev *et al.*, Nature 405, 431 (2000)

Transition probabilities in ^{96,98}Sr

E. Clément, MZ et al, PRL 116, 022701 (2016)

Coulomb excitation at REX-ISOLDE: ⁹⁶Sr on ¹⁰⁹Ag, ¹²⁰Sn, ⁹⁸Sr on ⁶⁰Ni, ²⁰⁸Pb

10th Workshop on Quantum Phase Transitions in Nuclei and Many-Body Systems, Dubrovnik, Croatia, July 11-15, 2022, - p. 9

Laser spectroscopy data

• precise measurements of charge radii, spectroscopic quadrupole moments, g factors for long-lived states

Example of ⁷⁹Zn:

- large isomer shift for the $1/2^+$, 1-MeV isomer in 79 Zn
- combined with $\beta_2 \approx 0.14$ deduced from B(E2) values in ^{78,80}Zn, results in $\beta_2 \approx 0.22$ for the isomer
- 1p-2h neutron configuration determined from the measured g factor
- first evidence for shape coexistence in the immediate vicinity of ⁷⁸Ni

X.F. Yang et al., PRL 116, 182502 (2016)

Quadrupole moments of excited states

E. Clément *et al.* Phys. Rev. C75, 054313 (2007)

- prolate-oblate shape coexistence in ^{74,76}Kr
- first Coulomb-excitation measurement of spectroscopic quadrupole moments using a radioactive beam 0.6

• spectroscopic quadrupole moments are zero for J=0,1/2 – complication for even-even nuclei

Quadrupole sum rules

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683 K. Kumar, PRL 28 (1972) 249

• electromagnetic multipole operators are spherical tensors – products of such operators coupled to angular momentum 0 are rotationally invariant

 $E(2,0) = Q\cos\delta$ • in the intrinsic frame of the nucleus, $\mathsf{E}(2,2) = \mathsf{E}(2,-2) = \frac{\mathsf{Q}}{\sqrt{2}}\mathsf{sin}\delta$ the E2 operator may be expressed using two parameters Q and δ E(2,1) = E(2,-1) = 0related to charge distribution: $\frac{\langle \mathsf{Q}^2 \rangle}{\sqrt{5}} = \langle \mathsf{i} | [\mathsf{E}2 \times \mathsf{E}2]^0 | \mathsf{i} \rangle = \frac{1}{\sqrt{(2\mathsf{I}_{\mathsf{i}}+1)}} \sum_{\mathsf{t}} \langle \mathsf{i} | | \mathsf{E}2 | | \mathsf{t} \rangle \langle \mathsf{t} | | \mathsf{E}2 | | \mathsf{i} \rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \\ \mathsf{I}_{:} & \mathsf{I}_{:} & \mathsf{I}_{:} \end{array} \right\}$ **2**⁺₃ **2**⁺₃ 0⁺₂ 2¹ 0

 $\langle Q^2 \rangle$: measure of the overall deformation; for the ground state – extension of B(E2; 0⁺ \rightarrow 2⁺) = ((3/4 π)eZR₀²)² β_2^2 Contributions to $\langle Q^2 \rangle$ in ¹⁰⁰Mo: K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

Quadrupole sum rules: triaxiality

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683 K. Kumar, PRL 28 (1972) 249

 $\langle \cos 3\delta \rangle$: measure of triaxiality

• relative signs of E2 matrix elements are needed: can we get them experimentally?

Contributions to $\langle Q^3 cos 3\delta \rangle$ in ¹⁰⁰Mo: K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

Relative signs of E2 matrix elements

• Coulomb-excitation cross section are sensitive to relative signs of MEs: result of interference between single-step and multi-step amplitudes

- excitation amplitude of state A: $a_A \sim \langle A \| E2 \| g.s. \rangle + \langle B \| E2 \| g.s. \rangle \langle A \| E2 \| B \rangle$
- excitation probability ($\sim a_A^2$) contains interference terms $\langle A \| E2 \| g.s. \rangle \langle B \| E2 \| g.s. \rangle \langle A \| E2 \| B \rangle$

- negative $\langle 2_1^+ || E2 || 2_2^+ \rangle$ (solid lines): much higher population of 2_2^+ at high CM angles
- sign of a product of matrix elements is an observable

Shape evolution of ^{96–100}Mo

MZ *et al.*, Nucl. Phys. A 712 (2002) 3 K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

- ^{72,74,76}Ge, ⁹⁶Mo: coexistence of the deformed ground state with a spherical 0⁺₂
- ground states of the Mo isotopes triaxial, deformation of 0^+_2 increasing with N
- shape coexistence in ⁹⁸Mo manifested in a different triaxiality of 0_1^+ and 0_2^+

Quadrupole invariants – example of ^{72,76}**Ge**

A.D. Ayangeakaa *et al.*, PRL 123, 102501 (2019)

PLB 754, 254 (2016)

• ⁷²Ge: much higher number of transitions observed in a new measurement

- \rightarrow slight change of the deduced invariants due to extra states entering the sum
- observed shapes of 0^+_{1,2} states in ^{72}Ge are very similar in terms of β and γ
- can it still be called shape coexistence?

Two-state mixing model

• we assume that physical states are linear combinations of pure spherical and deformed configurations:

 $| I_1^+ \rangle = +\cos \theta_I \times | I_d^+ \rangle + \sin \theta_I \times | I_s^+ \rangle$ $| I_2^+ \rangle = -\sin \theta_I \times | I_d^+ \rangle + \cos \theta_I \times | I_s^+ \rangle$

with transitions between the pure spherical and deformed states forbidden:

 $\langle 2_d^+ \| E2 \| 0_s^+ \rangle = \langle 2_d^+ \| E2 \| 2_s^+ \rangle = \langle 2_s^+ \| E2 \| 0_d^+ \rangle = \mathbf{0}$

• the measured matrix elements can be expressed in terms of the "pure" matrix elements and the mixing angles:

```
 \langle 2_1^+ || E2 || 0_1^+ \rangle = 
 \sin \theta_0 \sin \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle + \cos \theta_0 \cos \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle 
 \langle 2_1^+ || E2 || 0_2^+ \rangle = 
 \cos \theta_0 \sin \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle - \sin \theta_0 \cos \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle 
 \langle 2_2^+ || E2 || 0_1^+ \rangle = 
 \sin \theta_0 \cos \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle - \cos \theta_0 \sin \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle 
 \langle 2_2^+ || E2 || 0_2^+ \rangle = 
 \cos \theta_0 \cos \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle + \sin \theta_0 \sin \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle
```


Dependence on additional assumptions

• two-state mixing parameters for ^{180,182,184,186,188}Hg derived under three different assumptions:

• large difference in resulting Q_t values; Q_t for the less deformed configuration in variant B approaches values for the more deformed one in variant C

A) Q_t values the same for all four Hg isotopes and constant within bands
B) Q_t evolve within bands according to moments of inertia
C) Q_t calculated independently for each

C) Q_t calculated independently for each mass and spin

E0 strengths, shape coexistence and mixing

- E0 transitions are sensitive to the changes in the nuclear charge-squared radii
- their strengths depends on the mixing of configurations that have different mean-square charge radii:

$$\rho^{2}(E0) = \frac{Z^{2}}{R^{4}} \cos^{2}\theta_{0} \sin^{2}\theta_{0} \left(\langle r^{2} \rangle_{A} - \langle r^{2} \rangle_{B} \right)^{2}$$

= $\left(\frac{3Z}{4\pi}\right)^{2} \cos^{2}(\theta_{0}) \sin^{2}(\theta_{0}) \cdot \left[\left(\beta_{1}^{2} - \beta_{2}^{2} \right) + \frac{5\sqrt{5}}{21\sqrt{\pi}} \left(\beta_{1}^{3} \cos\gamma_{1} - \beta_{2}^{3} \cos\gamma_{2} \right) \right]^{2}$
J.L. Wood *et al.*, NPA 651, 323 (1999)

Example of ⁴²Ca: K. Hadyńska-Klęk *et al.*, PRC 97 (2018) 024326 (Coulomb excitation), J.L. Wood *et al.*, NPA 651, 323 (1999) (E0)

	from E2 matrix elements [KHK]	from $ ho^2(E0)$ [JLW]
		+ sum rules results [KHK]
$\cos^2(\theta_0)$	0.88(4)	0.84(4)
$\cos^2(\theta_2)$	0.39(8)	-

- good agreement of the $\cos^2(\theta_0)$ values obtained with the two methods
- $\cos^2(\theta_2) < 0.5$: two-state mixing model cannot be applied to 2⁺ states in ⁴²Ca

Population of the deformed structure in one-neutron transfer

C. Ellegaard et al., Phys. Lett. 40B (1972) 641

- equal population of 2⁺₁ and 2⁺₂ in ⁴¹Ca(d,p)⁴²Ca the same admixture of (f_{7/2})², while the quadrupole moments are very different!
- \rightarrow the remaining admixtures to the 2⁺₁ and 2⁺₂ wave functions must be different \rightarrow another configuration must enter the mixing

Three-state mixing

- three-state mixing provides good reproduction of B(E2) values and transfer cross sections for ^{30,32}Mg (A. Machiavelli, Phys. Scr. 92, 064001 (2017))
- future challenge: identification of the predominantly 0p-0h 0⁺ state in ³²Mg that would confirm this scenario (two (0,2)⁺ states observed recently in a knockout study, N. Kitamura *et al.*, PLB 221, 136682 (2021))

E. Ideguchi et al., PRL 128, 252501 (2022)

• destructive interference in three-state mixing proposed as the reason for an anomalously low $\rho^2(E0; 0^+_3 \rightarrow 0^+_1)$ value

Take-away message

- multiple observables can point to shape coexistence in more or less direct way
- they can be measured using various experimental techniques, each of them having different limitations
- use of complementary probes improves our understanding and provides necessary consistency checks