Contribution ID: 86

Type: not specified

Magnetic dipole moments as a signature for α-clustering in even-even self-conjugate nuclei

Wednesday 13 July 2022 16:15 (20 minutes)

The magnetic dipole moments in even-even self-conjugate nuclei from ¹²C to ⁴⁴Ti are investigated. For the latter, the measured gyromagnetic factors of excited states turn out to assume the same value of $g \approx +0.5$ within statistical errors. This peculiar feature can be interpreted on the basis of collective excitations of α -clusters. Analogously, the behaviour of the same observable is studied for all isotopes obtained by adding one or two neutrons to the considered self-conjugate nuclei. It is found that for the N = Z + 1 isotopes the α -cluster structure hardly contributes to the observed negative gyromagnetic factor, corroborating molecular α -cluster models. The addition of a further neutron, however, restores the original α -cluster g-factors, except for the semi-magic isotopes, in which the deviations from $g \approx +0.5$ can be associated with the relevant shell closures. Secondly, the same observable is analyzed in the framework of a macroscopic α -cluster model on a finite lattice of side length L. In particular, discretization effects induced in the magnetic dipole moments of the 2_1^+ and the 3_1^- states of ¹²C at different values of the lattice spacing a are discussed. The context provides eventually the opportunity to probe the effectiveness of the existing approaches in reducing the artifacts introduced by a finite lattice spacing.

Presenter: STELLIN, Gianluca (DRF/DPhN/Irfu/LENA CEA Saclay)

Session Classification: Clustering and shape-phase transitions in nuclei and other physical systems

Track Classification: Clustering and shape-phase transitions in nuclei and other physical systems