Contribution ID: 79 Type: not specified

Stabilization of quantum states at ESQPTs

Friday, 15 July 2022 11:30 (30 minutes)

It is well known that ESQPTs can either enhance or suppress survival probability of the initial state after a quantum quench. These effects, theoretically demonstrated particularly in the Lipkin model, the Tavis-Cummings model and the Rabi model, see e.g. Refs. [1,2], represent a possible experimental test of criticality in the excited domain. We will show the common origin of both these phenomena and provide their semiclassical explanation in terms of Wigner quasiprobability distributions.

References:

[1] M. Kloc, D. Šimsa, F. Hanák, P.R. Kaprálová-Žďánská, P. Stránský, P. Cejnar, Phys. Rev. A 103, 032213 (2021).

[2] P. Stránský, P. Cejnar, R. Filip, Phys. Rev. A 104, 053722 (2021).

Primary author: Dr KLOC, Michal (Department of Physics, University of Basel, Switzerland)

Co-authors: Prof. RADIM, Filip (Department of Optics, Faculty of Science, Palacký University); Prof. CEJNAR, Pavel (Inst. of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University); Dr ŠIMSA, Daniel (Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic); Dr KAPRÁLOVÁ-ŽĎÁNSKÁ, Petra Ruth (Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic); Dr HANÁK, Filip (Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic)

Presenter: STRÁNSKÝ, Pavel (Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University)

Session Classification: Excited-state quantum phase transitions

Track Classification: Excited-state quantum phase transitions