
Maximum likelihood fits with TensorFlow

Josh Bendavid

Jun. 4, 2019

Josh Bendavid (CERN) TensorFlow Fits 1

Introduction: Maximum Likelhood Fits

Common framework for statistical interpretation of HEP data:
Maximum Likelihood Fits

Maximize the joint probability of the data ~x given some
parameters of the model ~θ which may include both
parameters of interest (POIs) such as production cross
sections, particle masses, etc, as well was nuisance
parameters, e.g. reconstruction efficiency or energy scale
allowed to vary within some prior constraint

Two variants:

Unbinned Maximum Likelihood Fit: Typically a small
number of observables (often 1, rarely more than 3) with a
large number of events, evaluate the continuous probability
density for each data event: − ln L =

∑
events p(~xievent|~θ)

Binned Maximum Likelihood Fit: Likelihood is evaluated
using bin counts in a histogram: − ln L =

∑
bins p(Nibin|~θ)

Josh Bendavid (CERN) TensorFlow Fits 2

Introduction: Maximum Likelihood Fits

Unbinned Maximum Likelihood Fit: Typically a small number of
observables (often 1, rarely more than 3) with a large number of events,
evaluate the continuous probability density for each data event:
− ln L =

∑
events p(~xievent|~θ) → small feature space, many examples

Binned Maximum Likelihood Fit: Likelihood is evaluated using bin
counts in a histogram: − ln L =

∑
bins p(Nibin|~θ) → Moderately sized

feature space, 1 example

E
ve

nt
s

/ G
eV

0

500

1000

1500

2000

2500

Data
S+B fit
B component

σ1 ±
σ2 ±

Untagged 1
=1.18µ=125.4 GeV, Hm --

CMS TeV) (13-1 35.9 fb

γγ→H

 (GeV)γγm
100 110 120 130 140 150 160 170 180

100−
50−
0

50

100

150 B component subtracted

µ
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

 ln
 L

∆
-2

0

1

2

3

4

5

6

stat+syst
stat only

0.14−
0.17+ = 1.18 µ

68% CL

95% CL

CMS
γγ→H

 (13TeV)-135.9 fb

 profiledHm

JHEP 1811 (2018)

185

Josh Bendavid (CERN) TensorFlow Fits 3

Introduction: Maximum Likelihood Fits

Special case: Binned template fits: Probability for observing
a given number of counts in a given histogram bin is itself
encoded in a set of histogram “templates” which are scaled
and/or interpolated as a function of the model parameters

Multi-dimensional histograms can always be “unrolled”

 (GeV)ττm
50 100 150 200

 (
G

eV
)

jj
m

400

600

800

1000

1200

1400

1600

1800

P
ro

ba
bi

lit
y

de
ns

ity

0

0.01

0.02

0.03

0.04

0.05

13 TeVCMS Simulation

)
h

τµ (VBF, ττ→qqH

 (GeV)ττm

0-
95

95
-1

15

11
5-

13
5

13
5-

15
5

15
5-

40
0

0-
95

95
-1

15

11
5-

13
5

13
5-

15
5

15
5-

40
0

0-
95

95
-1

15

11
5-

13
5

13
5-

15
5

15
5-

40
0

0-
95

95
-1

15

11
5-

13
5

13
5-

15
5

15
5-

40
0B

kg
. u

nc
.

(O
bs

. -
 b

kg
.)

0
2
4
6
8

E
ve

nt
s/

bi
n

1−10

1

10

210

310
 < 700 GeVjj300 < m < 1100 GeVjj700 < m < 1500 GeVjj1100 < m > 1500 GeVjjm

 (13 TeV)-135.9 fbCMS , VBF
h

τµ

Observed

 = 1.09)µ (ττ→H

ττ→Z

/eeµµ→Z

+jetstt

W+jets

QCD multijet

Others

Total unc.

 = 1.09)µ (ττ→H

Bkg. unc.
Obs. - bkg.

Bkg. unc.
ττ→H

Bkg. unc.

Phys. Lett. B 779 (2018) 283

Josh Bendavid (CERN) TensorFlow Fits 4

Introduction

Discussing a particular test case for binned maximum
likelihood fit with templates here related to W cross section
measurements:

∼ 180 M events expected
1444 bins
96 parameters of interest (2 charges x 3 polarization states x
16 |y | bins)
70 nuisance parameters

Fit was previously attempted with Higgs combination tool:
Likelihood constructed/computed with RooFit
Minimization with Minuit2
Gradient for minimization evaluated numerically with some
variation of finite difference method (implemented internally in
Minuit)

Large numbers of events can introduce numerical
precision/stability issues

Major issues with fit convergence, Hessian uncertainties,
likelihood scans

Josh Bendavid (CERN) TensorFlow Fits 5

Why TensorFlow?

Most important in this context: Efficient and numerically
stable computation of gradients (using standard backprop)

Parallelization, use of GPU’s etc also interesting

Josh Bendavid (CERN) TensorFlow Fits 6

Likelihood Construction in TensorFlow

Any template shape fit can be expressed as a many-channel counting
experiment

Negative log-likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(1)

nexp
ibin =

∑
jproc

rjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (2)

nexp
ibin,jproc is the expected yield per-bin per-process

rjproc is the signal strength multiplier per-process

θksyst are the nuisance parameters associated with each systematic
uncertainty

κibin,jproc,ksyst is the size of the systematic effect per-bin, per-process,
per-nuisance

(The above assumes all shape uncertainties are implemented as

log-normal variations on individual bin yields, which is appropriate for e.g.

PDF/QCD scale variations, but not for things like momentum

scale/resolution variations)

Josh Bendavid (CERN) TensorFlow Fits 7

Likelihood Construction in TensorFlow

Full contents of datacards can be represented by a few numpy
arrays:

nbin × nproc 2D tensor for expected yield per-bin per-process

nbin × nproc × nsyst 3D tensor for κ (actually lnκ) values

parameterizing size of systematic effect from each nuisance

parameter on each bin and process (actually two tensors, one each

for lnκup and lnκdown to allow for asymmetric uncertainties)

POI’s and nuisance parameters implemented as TensorFlow
Variables

Full likelihood constructed as TensorFlow computation graph
with observed data counts as input

Some details:
Precompute as much as possible with numpy arrays which are
loaded into graph via tf data api from h5py arrays on disk
Double precision everywhere

Offsetting of likelihood in optimal placement within the graph to

minimize precision loss

Josh Bendavid (CERN) TensorFlow Fits 8

Likelihood Construction in TensorFlow

Any template shape fit can be expressed as a many-channel counting
experiment

Negative log-likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(3)

nexp
ibin =

∑
jproc

rjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (4)

Likelihood evaluation reduced to essentially two large tensor contractions
(matrix multiplications)

Both dense and sparse implementations are used as appropriate

Josh Bendavid (CERN) TensorFlow Fits 9

Minimization

Minimization in TensorFlow normally done with variations on
Stochastic Gradient Descent, appropriate for very large
number of parameters in deep learning (10’s of thousands to
millions)

For O(100’s-1000’s) of parameters, more appropriate to use
second-order minimization techniques

Particularity: Loss function needs to be minimized
exhaustively. There is a global minimum, and further
statistical analysis (determining confidence interevals etc)
requires finding it to high accuracy

Hessian can be computed analytically but still slow and not
very optimal → use quasi-newton methods which approximate
hessian from change in gradient between iterations (the
MIGRAD algorithm in Minuit/Minuit2 belongs to this class of
algorithms, as does BFGS)

Josh Bendavid (CERN) TensorFlow Fits 10

Minimization

While the likelihood has a global minimum and is well
behaved in the vicinity, it is (apparently) NOT convex
everywhere in the parameter space

BFGS-type quasi-Newton methods are not appropriate since the
Hessian approximation can never capture non-convex features
Line search is not a good strategy even with a well-approximated
(or exact) Hessian, since this will tend to get stuck or have slow
convergence near saddle points/in non-convex regions

Major source of non-convexity is the polynomial interpolation of lnκ

for asymmetric log normal uncertainties

Started with trust-region based minimizer with SR1
approximation for hessian, as implemented in SciPy (minimal
adaptation required for existing TensorFlow-SciPy interface)

Bonus: this also supports arbitrary non-linear constraints
Caveat: Only likelihood and gradient evaluation done in
Tensorflow, rest of minimizer is in python/numpy

Josh Bendavid (CERN) TensorFlow Fits 11

Some Performance Tests

Likelihood Likelihood+Gradient Hessian

Combine, TR1950X 1 Thread 10ms 830ms -
TF, TR1950X 1 Thread 70ms 430ms 165s

TF, TR1950X 32 Thread 20ms 71ms 32s
TF, 2x Xeon Silver 4110 32 Thread 17ms 54ms 24s

TF, GTX1080 7ms 13ms 10s
TF, V100 4ms 7ms 8s

(1444 bins, 96 POI’s, 70 nuisance parameters)
n.b. these numbers are with an older implementation, all have improved
Single-threaded CPU calculation of likelihood is 7x slower in Tensorflow
than in Roofit (to be understood and further optimized)
Gradient calculation in combine/Minuit is with 2n likelihood evaluations
for finite differences (optimized with caching)
Xeons are lower clocked than Threadripper, but have more memory
channels and AVX-512
Back-propagation calculation of gradients in Tensorflow is much more
efficient (in addition to being more accurate and stable)

Best-case speedup is already a factor of 100

Josh Bendavid (CERN) TensorFlow Fits 12

Some Performance Tests: Minimization

Minimization
L+Gradient scipy trust-constr scipy cpu usage

TF, TR1950X 32 Thread 71ms/call 200ms/iteration 2107%
2x Xeon Silver 4110 32 Thread 54ms/call 237ms/iteration 2587%

TF, GTX1080 (+TR1950X) 13ms/call 84 ms/iteration 1081%
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 1558%

Each iteration of the SR1 trust-region algorithm requires
exactly 1 likelihood+gradient evaluation

Significant amount of processing power (and CPU bottleneck)
in scipy+numpy parts of the minimizer (non-trivial linear
algebra)

Josh Bendavid (CERN) TensorFlow Fits 13

Further Optimizing Minimization

Current SR1 trust-region implementation in scipy based on
conjugate gradient method for solving the quadratic
subproblem → large number of inexpensive sub-iterations
which don’t parallelize well

Have implemented several variants of quasi-newton trust
region minimizers natively in TensorFlow

Most advanced based on L-SR1 Orthonormal basis
minimization (arXiv:1506.07222), including a new
non-limited-memory variant with direct update to
eigen-decomposition of Hessian

Hessian-free methods (e.g “trust-krylov” in SciPy) are also
interesting since they can be used with exact Hessian-vector
products computed efficiently with backprop, but in practice
these require many Hessian-vector product evaluations
per-iteration

Josh Bendavid (CERN) TensorFlow Fits 14

Some Performance Tests: Minimization

Minimization
L+Gradient scipy trust-constr TF TrustSR1Exact

TF, TR1950X 32 T 71ms/call 200ms/iteration 89ms/iteration
2x Xeon Silver 4110 32 T 54ms/call 237ms/iteration 63ms/iteration

TF, GTX1080 (+TR1950X) 13ms/call 84ms/iteration 55ms/iteration
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 51ms/iteration

Example here with iterative Cholesky decomposition to solve
TR subproblem (a la Nocedal and Wright algo 4.3)

Substantial reduction of overhead relative to bare
likelihood+gradient call

Relative remaining overhead much larger on GPU

n.b, this fit converges in about 500 iterations with the
TrustSR1Exact algorithm, about 25s/fit with GPU

Using gradient descent methods available in Tensorflow
requires O(10k) iterations

Josh Bendavid (CERN) TensorFlow Fits 15

Updated Performance Tests

(Newer TensorFlow, further optimized, but larger model)
Likelihood L+Grad Hessian MaxRSS

TF, TR1950X 1 Thread (pfor) 26ms 73ms 7.9s 3000MB
TF, TR1950X 32 Thread (pfor) 39ms 83ms 1.1s 3900MB

TF, GTX1080 (+TR1950X) (loop) 64ms 69ms 3.0s 2900MB
TF, GTX1080 (+TR1950X) (pfor) 64ms 69ms 0.8s 2900MB

(1824 bins, 101 processes, 96 POI’s, 257 nuisance parameters)

Size of raw arrays is 760MB

non-pfor hessian calculation failed with “Already exists: Resource” errors

without “ on CPU

Josh Bendavid (CERN) TensorFlow Fits 16

Updated Performance Tests: Large/Sparse Model

Likelihood L+Grad Hessian MaxRSS

Sparse TF, TR1950X 1 Thread 24ms 40ms 52s 980MB
Sparse TF, TR1950X 32 Thread 40ms 70ms 3.7s 1200MB

Dense TF, TR1950X 1 Thread 245ms 540ms - 6800MB
Dense TF, TR1950X 32 Thread 237ms 534ms - 7000MB

(1296 bins, 655 processes, 648 POI’s, 444 nuisance parameters)

GPU not available with standard build (SparseTensorDenseMatMul)

Size of raw arrays in dense mode is 6GB

pfor for Hessian not available in Sparse case (SparseTensorDenseMatMul
not supported)

Hessian computation in dense mode caused OOM with pfor, and
“Already exists: Resource” errors without

Dense model too big for my GPU

Josh Bendavid (CERN) TensorFlow Fits 17

Optimizing Memory Consumption

This type of model has a peculiar feature of very large
constants (3-tensor representing systematic variations on
templates can be several GB especially in dense mode with
larger numbers of processes and systematic variations)

To optimize memory consumption for graphs with large
constants:

Don’t include large constants in the graph definition (there is
also a hardcoded 2GB limit in doing so)
Don’t read large numpy arrays from disk (unless using
memmapping, but then can’t use compression)
Don’t store large constants in tf Variables (because it’s
apparently impossible to initialize them without having at least
a second copy of the contents in memory)

Josh Bendavid (CERN) TensorFlow Fits 18

Optimizing Memory

Adopted solution

HDF5 arrays with chunked storage and compression
Numpy arrays are stored as flattened HDF5 arrays to allow
reading chunk by chunk while preserving the order of the array
and maintaining flexibility in choice of chunk size
Read chunk by chunk using tf data API with tf py func to
interface with h5py
Use batching to reassemble full array into a single tensor, then
use the in-memory cache so the read only happens once
(reshaping and possible truncation of the overflow from the
last batch have near-zero cpu or memory footprint)
Text+root histogram conversion has been adapted to write
hdf5 arrays instead of a tf graph with in-built constants

(Avoiding a second copy in memory took some patience and
was not obvious how to achieve)

Josh Bendavid (CERN) TensorFlow Fits 19

Covariance Matrices

Irrespective of minimization algorithm, often want to compute
covariance matrix at the end for interpreting uncertainties →
compute Hessian and invert it

New vectorized pfor construction gives large speedups for this
(so much that full second-order minimization methods are
even feasible in some cases)

Josh Bendavid (CERN) TensorFlow Fits 20

Other Optimization Opportunities

Detailed study of scaling of minimization
overhead/performance with number of free parameters is
needed

Most likely there is further room for improvement with better
algorithms/ones more suited for GPU’s

Efficiency of specific matrix factorization steps to be carefully
checked/profiled

Batch evaluation of likelihood feasible/useful? (parallel
minimization algorithm? Multiple toys in parallel?)

Implement simpler χ2/Gaussian approximation to likelihood
for high statistics cases

Josh Bendavid (CERN) TensorFlow Fits 21

Some Technical Feedback

From first tests pfor works very well for Hessian computation
in this context

A few things which would be nice to have:
GPU support for double-precision in SparseTensorDenseMatMul
(trivial, just some missing macro calls)
Vectorized pfor support for SparseTensorDenseMatMul (for Hessian
computation)
int32 support for SparseTensor indices
More streamlined/memory efficient handling of large constants
Option to return status codes for matrix decomposition instead of
throwing an exception (particularly for Cholesky decomposition,
where underlying Eigen code already supports it → very useful for
steering behaviour depending on positive-definiteness of a matrix)

Would be nice if tf.where could suppress NaN’s from non-selected

branches

Have not moved to Tensorflow 2.0 yet (and no very strong
need for eager execution, though it could simplify
implementation of minimization algorithms)

Josh Bendavid (CERN) TensorFlow Fits 22

Implementation

Code lives here: https://github.com/bendavid/

HiggsAnalysis-CombinedLimit/tree/tensorflowfit (not very
streamlined for the moment, since the priority has been on a particular set
of physics analyses in progress with it, and currently somewhat
intertwined with existing CMS fitting tools)

Two scripts:

scripts/text2tf.py: Create tensorflow graph from
datacards/ROOT histograms (outputs hdf5 file containing
flattened arrays for large constant tensors)
scripts/combinetf.py: Construct graph, load constant arrays
into tensors, run fits/toys/scans with graph

Some interesting bits related to reading hdf5 arrays, some sparse tensor
operations, and minimization in python area

Second order minimizers will be interesting to contribute upstream (and

some work already on L-SR1 algorithms for more conventional deep

learning applications, e.g arXiv:1807.00251)

Josh Bendavid (CERN) TensorFlow Fits 23

https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit

Other Related Work

Some related efforts by others in parallel:

pyhf: https://github.com/diana-hep/pyhf

ZFit: https://github.com/zfit/zfit

Josh Bendavid (CERN) TensorFlow Fits 24

https://github.com/diana-hep/pyhf
https://github.com/zfit/zfit

Other Use Cases

Another interesting use case: Monte Carlo Phase space
integration

Technically closer to traditional machine learning use cases
with generative models

e.g arXiv:1707.00028

Josh Bendavid (CERN) TensorFlow Fits 25

Conclusions

Construction of likelihood for binned template fits
implemented in Tensorflow

Reasonably stable implementation with basic functionality
available, already usable for analysis, with important gains in
speed and numerical stability for complex cases

Additional statistical features to be implemented as needed
(e.g. bin-by-bin template uncertainties)

No plans so far to extend to analytic PDF’s (not planning a
full re-implementation of RooFit)

Ongoing studies and work to further understand and optimize
performance on GPU’s, especially with respect to tradeoffs of
different minimization algorithms

Ultimate limits/achievable scale to be further understood

Josh Bendavid (CERN) TensorFlow Fits 26

