pyhf

Matthew Feickert, Lukas Heinrich, Giordon Stark

pyhf

- Simultaneous binned fit to multiple channels, each with multiple samples.
- Sample yields estimated function of nominal rate, scale factors and systematics.
- Systematics imply constraint term on the pdf.

but so far only implementation in ROOT

pyhf

High Level Goals of pyhf:

- Python-based implementation
 - unlock python / data science eco-system
 - (new systematic types Gaussian Processes)
 - differentiable formulation
 - performance
 - lower barrier of entry to use HistFactory (e.g. phenomenologists..)

∂ifferentiable ℒikelihoods

- Likelihood Preservation
 - side benefit: find language-independent spec
 - likelihoods more important data product of an analysis

JSON Format:

Idea: remove "split brain" from XML + ROOT and inline all data into a single JSON document. For binned data, this should be fine.

(Should be find for very large binned likelihoods, but can use pointers into external storage if needed)

Fully vectorized computation

Use shim to make backend agnostic

- NumPy (default)
- Tensorflow
- PyTorch
- (MXnet)
- (jax)
- (Dask)

Advantage of non-Numpy backends

- Distribution across multiple machines (Dask)
- Hardware Acceleration (ML backends)
- Improved Fitting through Automatic Differentiation (ML Backends)

Tensor Structure

rather bare-bones, optimized for vectorized computation,

easy to extend to more batch dimensions (batched data, batched parameters)

Constraint "data" treated the same as observed data

Integration with other stats packages.

- See multiple projects aiming at doing out-of-ROOT stats. A lot of potential but also need to be careful not to fragment too much
 - RooFit/RooStats provided useful common language
- happy to have pyhf be only responsible for the pdf / likelihood function implemented in various ML backends
- Other packages for
 - minimization
 - hypothesis testing / limit setting
 - etc...
- would like to keep independent from any one ML framework
 - easier for closed world of HistFactory, maybe more challenging for e.g. RooFit/zfit type open world (see next)

RooStats:

- aims to separate modeling (i.e. p(x)) from inference / testing methods. (e.g. frequentist v bayesian
- adds some semantics on the model (RooStats::ModelConfig)
 - what are POI vs NPs
 - links to data (and aux data)
 - link to pdf
 - set of well-defined parameter points (S+B vs B vs best Fit) etc
- Operates mostly on abstract notion of pdf, which we could as a community try to agree on outside of ROOT. ABC which can
 - generate toys
 - evaluate nll
 - be composed

