PBC Technology Working Group Report

Guido Zavattini for the W.G. CERN, November 2019

Core members:

Giovanni Cantatore (aKWISP), Dimitri Delikaris (CERN), Babette Döbrich (CERN), Livio Mapelli (DARKSIDE), Antonio Polosa (Nanotubes), Pierre Pugnat (LSW/OSQAR), Joern Schaffran (DESY/ALPS), Andrzej Siemko (CERN), Paolo Spagnolo (STAX), Herman ten Kate (CERN/IAXO), Guido Zavattini (PVLAS)

PBC Technology Working group

- Exploration and evaluation of possible technological contributions of CERN to non-accelerator projects
- Survey of suitable experimental initiatives and their connection to and potential benefit to and from CERN
- Description of identified initiatives and how their relation to the unique CERN expertise is facilitated

OUTLINE OF TALK

- Experiments/Initiatives within the Technology WG
- Updates on progress since January 2019:
 - GrAHal (Grenoble Axion Haloscope)
 - DarkSide
 - OSQAR BabyJURA (Backup slides)
 - Carbon Nano Tubes
 - a-KWISP
 - STAX

Emphasis will be on VMB@CERN (Vacuum Magnetic Birefringence @ CERN)

Initiatives integrated in the Technology W.G.

6) JURA (LSW combining ALPS-III and OSQAR+)

> Covered Jan. 2019

7) LSW-STAX

8) CNT Based DM Detector PTOLEMY (CNB)

2) DarkSide

4) VMB@CERN

Covered here

GrAHal : <u>Gr</u>enoble <u>Axion Hal</u>oscope for Dark Matter search & explore the ultra-low energy frontier of cosmic particles (1-100 μ eV)

R. Ballou, P. Camus, T. Grenet, S. Kramer, P. Pugnat, J. Quevillon, N. Roch, C. Smith, CNRS-Grenoble, Univ. Grenoble-Alpes

 \Rightarrow RF cavities (0.3-30 GHz) at 20 mK & quantum amplifiers SQUID & JPA (IN) in strong magnetic field (LNCMI)

Grenoble Hybride Magnet (Equipex LaSUP, LNCMI)
 . 43 T/34 mm, 40 T/50 mm, 27 T/170 mm, 9 T/800 mm

https://indico.desy.de/indico/event/13889/contribution/11/material/slides/0.pdf http://cds.cern.ch/record/2315130/files/fulltext.pdf

2020-2024: 1st experimental runs at 20 mK in smaller superconducting magnets (LANEF, Néel Institute) in 16-20 T/50 mm & 14 T/70 mm

Slides: P. Pugnat

DarkSide

Aria Project – isotope cryogenic separation

In Sulcis - Iglesiente, Sardinia. Monte Sinni mine Deplete underground Ar (Uar) from ³⁹Ar

Seruci-0: pilot distilling column 27 m high

- Commissioned, June 2019
- I, II and III runs, Jul Aug 2019
- IV runs, Oct 2019
- N₂ in column
- Next test TBD

Seruci-1: 350 high distillation column

- 7 platforms installed into the Shaft
- 2 modules will be installed next months

DarkSide

Cryogenic photosensor

- Custom cryogenic photosensors based on Silicon Photomultipliers designed by FBK and produced by LFoundry
- True replacement of 3" cryogenic PMTs: single channels unit with 25 cm² active surface
- 45% Photon Detection Efficiency, 0.1 Hz/mm² Dark Noise Rate at 87 K
- Single photon sensitivity with very large separation of single photon peak from baseline (see next slide, SNR~14)

a-KWISP

advanced-KWISP update

- Recent technical advances (KWISP 3.0 at CAST)
 - compact, monolithic optical bench
 - successful vibration isolation: KWISP 3.0 is taking data at CAST in a "hostile" noise environment
 - ready for cooling, feasibility study programmed at CAST
 - custom membrane coatings
 - control quality factor, stiffness and electrical properties
 - characteristics tested in the lab with KWISP 1.5
- Next steps
 - assemble pilot DMIM
 - cryostat feasibility study (programmed at CAST)

test membranes

CNT detector for UV & dark PMT

arXiv:1911.01122

First step towards a **dark PMT**:

anisotropic photocathode filters electron scattered by DM when aligned with CNT

Si APD tested with 500 eV electrons

CNT on fused silica

successfully synthesized

Slides: G. Cavoto

STAX 2019 Activities

Bilayer Cu-Al (10 nm), with tuning of Tc ~ 50 mK

Reduce T_c to improve microwave energy resolution

Submitted to Journal of Low Temperature Physics JLTP-D-19-00189

Above 15 nm the decrease in transition temperature saturates

VMB@CERN

Physics

Light-by-light interaction

- Light by light interaction in vacuum at low energies has been predicted but never observed yet.
- Leads to n > 1 for the index of refraction in an external field.
- Manifestation of quantum vacuum at a macroscopic level

Vacuum magnetic birefringence and dichroism

H. Euler and B. Kockel (1935) determined an effective Lagrangian density describing electromagnetic interactions in the presence of the <u>virtual electron-positron</u> sea discussed a few years before by Dirac.

$$\mathcal{L}_{\rm EK} = \frac{1}{2\mu_0} \left(\frac{\mathbf{E}^2}{c^2} - \mathbf{B}^2 \right) + \frac{A_e}{\mu_0} \left[\left(\frac{\mathbf{E}^2}{c^2} - \mathbf{B}^2 \right)^2 + 7 \left(\frac{\vec{\mathbf{E}}}{c} \cdot \vec{\mathbf{B}} \right)^2 \right] + \dots \\ A_e = \frac{2}{45\mu_0} \frac{\hbar^3}{m_e^4 c^5} \alpha^2 = 1.32 \times 10^{-24} \,\mathrm{T}^{-2} \right]$$

Predicts vacuum magnetic birefringence but no dichroism

$$\Rightarrow \Delta n_B = 3A_e B^2 \qquad \Delta \kappa_B \simeq 0$$

Axion-Like Particles (ALPs)

Extra terms can be added to the effective Lagrangian to include contributions from hypothetical neutral light particles weakly interacting with two photons

G. Zavattini, PBC – CERN, November 2019

Measurable quantities

Key ingredients to measuring VMB

• Strong magnetic field

- maximize B^2L to maximize the optical path difference $\mathcal{D}_n = \Delta n L_{\text{Mag}}$
- At B = 9 T => $\mathcal{D}_n = 3A_e B^2 L \approx 5 \ge 10^{-21} \text{ m}$
- Long optical path $L_{eff} = NL_{Mag}; \quad N = 2\mathcal{F}/\pi$
 - Fabry-Perot resonator
- Modulate the induced ellipticity
 - modulate the field or the polarization

General scheme: field modulation

Timeline of VMB results

- 2016 PVLAS point corresponds to an integration T ≈ 5.10⁶ s.
- Uncertainties are 1σ.
- The use of permanent magnets allowed detailed debugging.
- Optical path difference
 Δn L_{Mag} =(1.1 ± 1.6)·10⁻²² m
- PVLAS cannot overcome the gap by integrating longer.

A. Ejlli, PhD Thesis, University of Ferrara, 2017, unpublished

F. Della Valle et al. (PVLAS collaboration), Eur. Phys. J. C 76, 24 (2016)

G. Zavattini, PBC – CERN, November 2019

Limiting noise

Sensitivity in optical path difference \mathcal{D}_n between two perpendicular polarizations.

BFRT:

.

Cameron

et al.

PRD,

(1993) 3707

PVLAS-LNL: M.

Bregant et al.

47 (1 PRD,

78

(2008) 032006

All are well above their respective shot-noise.

With a <u>very high finesse</u>, the sensitivity in \mathcal{D}_n does not depend on the finesse. <u>The noise originates from mirrors. It is amplified by N just like a signal</u>

G. Zavattini, PBC – CERN, November 2019

Starting point for VMB@CERN

1) Highest possible B²L with field always ON

- 2) Separate modulation of effect from magnetic field
- 3) Assume the intrinsic noise curve in \mathcal{D}_{n}
- Increase B²L: Static superconductor field
 - 1 LHC magnet has $B^2L \approx 1200 T^2m$.
 - 1 HERA magnet has B²L ≈ 250 T²m
- Modulation of effect
 - Cannot be done with superconductor magnets above ≈ 0.1 Hz. Intrinsic noise dominates.
 - Rotate the polarisation inside the magnetic field
 - ... But must be kept fixed on the mirrors.

Polarization modulation scheme

- Rotate polarization inside the magnet
- Fix polarization on mirrors to avoid mirror birefringence signal
- Insert two co-rotating half wave plates with a fixed relative angle $\Delta \phi$
 - Total losses ≤ 0.4% (commercial). Maybe 10 times lower is possible.
 - Maximum N \approx 600 (with \leq 0.4% losses). Maybe X 10 ?
 - N = 600 $\Leftrightarrow \mathcal{F}$ = 1000

• Systematic effects must be studied during the first 2 years of the project (in local labs)

Optical path difference sensitivity

- VMB can be reached at SNR = 1 in
 ≈12 hrs with sensitivity 10⁻¹⁸ m/√Hz ~
- Not limited by cavity noise above
 ≈ 3 Hz
- Possible parameters:
 N = 600, I_{out} = 40mW at shot noise
- Parameter space (N, I_{out}, freq) needs to be explored
- sensitivity needs demonstration

VMB@CERN Letter of Intent

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

2018-xxx December 3, 2018

Letter of Intent to measure Vacuum Magnetic Birefringence: the VMB@CERN experiment

R. Ballou¹⁾, F. Della Valle²⁾, A. Ejlli³⁾, U. Gastaldi⁴⁾, H. Grote³⁾, Š. Kunc⁵⁾, K. Meissner⁶⁾, E. Milotti⁷⁾, W.-T. Ni⁸⁾, S.-s. Pan⁹⁾, R. Pengo¹⁰⁾, P. Pugnat¹¹⁾, G. Ruoso¹⁰⁾, A. Siemko¹²⁾, M. Šulc⁵⁾ and G. Zavattini^{13)*}

¹Institut Néel, CNRS and Université Grenoble Alpes, Grenoble, France
²INFN, Sez. di Pisa, and Dip. di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, Siena (SI), Italy
³School of Physics and Astronomy, Cardiff University, Cardiff, UK
⁴INFN, Sez. di Ferrara, Ferrara (FE), Italy
⁵Technical University of Liberec, Czech Republic
⁶Institute of Theoretical Physics, University of Warsaw, Poland
⁷Dip. di Fisica, Università di Trieste and INFN, Sez. di Trieste, Trieste (TS), Italy
⁸Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, ROC
⁹Center of Measurement Standards, Industrial Technological Research Institute, Hsinchu, Taiwan, ROC
¹⁰INFN, Lab. Naz. di Legnaro, Legnaro (PD), Italy
¹¹LNCMI, EMFL, CNRS and Université Grenoble Alpes, Grenoble, France
¹²CERN, Genève, Switzerland
¹³Dip. di Fisica e Scienze della Terra, Università di Ferrara and INFN, Sez. di Ferrara, Ferrara (FE), Italy

- Polarisation scheme was presented at the PBC open meeting in November 2017
- VMB@CERN coagulated within the PBC from PVLAS, OSQAR and independently from Q&A
- Why at CERN? With the LHC magnets, CERN has the highest B²L
- December 2018: presented Lol to SPSC
- January 2019: assigned referees from SPSC
- April 2019: first meeting with SPSC referees
- September 2019: funded testing phase by INFN for 2020. Approved also for 2021 depending on CERN iter.
- October 2019: presented to the SPSC with a positive feedback

Present VMB@CERN collaboration

Š. Kunc, M. Šulc Technical University of Liberec, Czech Republic R. Balou Institut Néel, CNRS and Université Grenoble Alpes, Grenoble, France P. Pugnat LNCMI, EMFL, CNRS and Université Grenoble Alpes, Grenoble, France M. Andreotti, P. Cardarelli, U. Gastaldi I.N.F.N., Sezione di Ferrara, Via Saragat 1, Blocco C, 44100 Ferrara, Italy G. Di Domenico, G. Zavattini I.N.F.N., Sezione di Ferrara and Dipartmento di Fisica, Università di Ferrara, Via Saragat 1, Blocco C, 44100 Ferrara, Italy F. Della Valle, C. Marinelli, E. Mariotti INFN, Sez. di Pisa, gruppo collegato di Siena and Dip. di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, Siena (SI), Italy V. Biancalana INFN, Sez. di Pisa, gruppo collegato di Siena and Dip. di Ingegneria, Università di Siena, Siena (SI), Italy R. Pengo, G. Ruoso I.N.F.N., Laboratori Nazionali di Legnaro, viale dell'Università 2, 35020 Legnaro, Italy Y-R Liang Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, People's Republic of China K. Meissner Institute of Theoretical Physics, University of Warsaw, Poland A. Siemko CERN, CH-1211 Geneva-23, Switzerland W-T. Ni Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, ROC S-s Pan Center of Measurement Standards, Industrial Technological Research Institute, Hsinchu, Taiwan, ROC A. Ejlli, H. Grote

University of Cardiff, Wales, UK

Lots of progress on initiatives

Backups

From **OSQAR** & ALPS toward Baby-JURA & JURA

- Exploiting the unique opportunity offered by LHC/FCC sc. dipole magnets
 - Use **up to** 15+15 LHC dipoles, 9 T, 14.3 m, 50 mm dia.
 - Use 16 T FCC sc. dipoles to be built
- Synergy with VMB@CERN & ALPS-II for the development of long fabry-Perot cavities and optical schemes
- Synergy with OSQAR for the development of low divergent optical beam

https://home.cern/fr/news/news/knowledge-sharing/long-sighted-laser-beam G. Zavattini, PBC – CERN, November 2019

Transition Edge Sensors

Transition Edge Sensors: Critical Temperature

For axions detection: $T_{C,Active} \sim 20$ mK

Phys. Dark Universe 12, 37 (2016)

T_c suppression by spatial confinement

Phys. Rev. B 85, 094508 (2012)C

Change

Resistance

Superconductivity Of Metals And Alloys, Advanced Books Classics (Westview Press, 1999)

Reduction of the wire section: constant thickness t smaller width W

Temperature

STAX

Development of a microwave TES single photon detector

LSW - experiment with microwaves