A NEW QCD FACILITY AT THE M2 BEAM LINE OF THE CERN SPS PHYSICS SCOPE

A. Guskov (JINR, Dubna) on behalf of the COMPASS++/AMBER collaboration

5.11.2019

Physics Beyond Collider Working Group meeting

COMPASS++/AMBER PHYSICS PROGRAM

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware additions	Dhace 1
muon-proton elastic scattering	Precision proton-radius measurement	100	$4 \cdot 10^6$	100	μ^{\pm}	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,	conventional muon
Hard exclusive reactions	GPD E	160	$2 \cdot 10^7$	10	μ^{\pm}	NH_3^\uparrow	2022 2 years	recoil silicon, modified polarised target magnet	and nauron beams
Input for Dark Matter Search	\overline{p} production cross section	20-280	$5 \cdot 10^5$	25	р	LH2, LHe	2022 1 month	liquid helium target	Y/
\overline{p} -induced spectroscopy	Heavy quark exotics	12, 20	$5 \cdot 10^7$	25	\overline{p}	LH2	2022 2 years	target spectrometer: tracking, calorimetry	
Drell-Yan charmonium	Pion PDFs	190	7.10'	25	π^{\pm}	C/W	2022 1-2 years		LS3
charmonium Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	$\mathrm{NH}_3^\uparrow,$ C/W	2026 2-3 years	"active absorber", vertex detector	
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	$5 \cdot 10^{6}$	> 10	<i>K</i> ⁻	Ni	non-exclusive 2026 1 year		Phase-2 conventional and RF-
Prompt Photons (RF)	Meson gluon PDFs	≥100	$5 \cdot 10^6$	10-100	$\pi^{K^{\pm}}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope	separated hadron beams
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	$5 \cdot 10^6$	25	<i>K</i> ⁻	LH2	2026 1 year	recoil TOF, forward PID	-
Vector mesons (RF)	Spin Density Matrix Elements	50-100	$5 \cdot 10^6$	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year		2

SUBMISSION OF THE PROPOSAL FOR PHASE-1

Physics with conventional beams

.

Proposal for Measurements at the M2 beam line of the CERN SPS

– Phase-1 –

COMPASS++*/AMBER[†]

Year	Activity	Duration	Beam
2021	Proton radius test measurement	20 days	μ
2022			
2022	Proton radius measurement	120 (+40) days	$\mid \mu$
	Antiproton production test measurement	10 days	p
2023	Antiproton production measurement	20(+10) days	p
	Proton radius measurement	140 (+10) days	μ
2024	Drell-Yan: pion PDFs and charmonium production	$\lesssim 2$ years	$p, K^+, \pi^+,$
2024+	mechanism		\bar{p}, K^{-}, π^{-}

https://nqf-m2.web.cern.ch

MESON AS A COMPLEX QCD SYSTEM

MASS BUDGET IN HADRONS

What are the relative contributions of Higgs and QCD mechanisms to meson masses?

While the proton mass in the chiral limit is close to its nominal mass, pion and kaon should become massless as Nambu-Goldstone bosons.

> But what does this mean? Do mesons "contain" less gluons than proton?

Twist-two parton distribution amplitudes at scale 2 GeV

Arlene C. Aguilar et al. Eur. Phys. J. A 55 (2019) 190/1-15

MESON PDFs

0.4

0.3

0.2

0.1

0.2

GRV (1992) set of pion PDFs: Drell-Yan, charmonia and prompt photon production experiments (**E615**, **NA10, WA70, NA24**).

SMRS (1992): basically the same old data.

JAM (2018) set: production of leading neutrons in DIS at HERA (**ZEUS, H1**).

Kaon PDFs: just 700 kaon-induced DY events at NA3

7

PION-INDUCED DRELL-YAN

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	$\pi^+ \ \pi^-$	17.6×10^{7} 18.6×10^{7}	4.05 - 8.55	5000 30000
NA3	30 cm H ₂	200	$\pi^+ \ \pi^-$	2.0×10^7 3.0×10^7	4.1 - 8.5	40 121
	6 cm Pt	200	$\pi^+ \ \pi^-$	2.0×10^7 3.0×10^7	4.2 - 8.5	1767 4961
	120 cm D ₂	286 140	$\frac{286}{140}$ π^{-}		4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^-	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^{-}	7.0×10^{7}	4.3 - 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^{7}	4.3 - 8.5 4.0 - 8.5	21700 31000
This exp		190	π^{-}	6.8×10^{7}	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^{7}	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^{7}	4.3 - 8.5 4.0 - 8.5	24100 32100

Isoscalar target + Both positive and negative beams + High statistics 9

120

4.0 - 8.5

123,600

39.800

CHARMONIA PRODUCTION

Two main mechanisms of J/ψ production in hadron collisions: $gg \rightarrow gJ/\psi$ and $q\bar{q} \rightarrow J/\psi$

- 1) test of charmonia production mechanisms: **CEM** vs **NRQCD**
- 2) probe of gluon and quark PDFs

Model-dependent separation of ggand $q\bar{q}$ contributions using data collected with both positive and negative beams.

$$\sigma_{J/\psi}^{K^-} - \sigma_{J/\psi}^{K^+} \propto \bar{u}^{K^-} u^N$$

 $\psi(2S)$ production - free of feed-down effect from χ_{c1} and χ_{c2}

CEM, GRV PDFs for π

CHARMONIA PRODUCTION

Experiment

NA3 [76]

E789 [129, 130]

E866 [131]

NA50 [132]

	W			78100
NA51 [133]	p d	450	р	301000 312000
HERA-B [134]	С	920	р	152000
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^{-}	1000000 1500000
This exp	75 cm C	190	π^+ π^- p	1200000 1800000 1500000
This exp	12 cm W	190	$\pi^+ \ \pi^- \ p$	500000 700000 700000

PRODUCTION OF PROMPT PHOTONS

This experiment (100 GeV): 50 pb⁻¹ (1 year) *WA70 (280 GeV):*1.3 pb⁻¹ for π^+ and 3.5 pb⁻¹ for π^-

STUDY OF KAON STRUCTURE

	Drell-Yan	Charmonia	Prompt photons	
Main hard process (LO)	$q\bar{q} \rightarrow l^+ l^- gg$	$g \to J/\psi \ g, \ q\bar{q} \to J/\psi \ g$	$q(\bar{q})g \to q(\bar{q})\gamma, \ q\bar{q} \to \gamma g$	
Content to be tested	valence and sea quarks	gluons and quarks	gluons and quarks	
Kinematic range	$x_F > 0$	$x_F > 0$	p_T >2 GeV/c	
Main target	С	С	LH ₂	
Expected statistics, 10 ⁶	π: ~0.1 (conv), K: ~0.06 (RF)	π: ~3 (conv), K: ~1 (RF)	π, K (RF) : ~10	

Different but overlapping kinematic ranges

most PDG entries more than 30 years old;

since 1990 only 4 kaon states added to PDG (only 1 to summary table)

COMPASS: $7 \times 10^5 \ K^- \pi^+ \pi^-$ events AMBER: > 1×10^7 16

0.8

0.3

0.4

0.5

0.6

0.7 \mathbf{X}_{γ} 17

0.2

0.1

OTHER TESTS OF LOW-ENERGY QCD PREDICTIONS Phase-2 0.500 奟 Tungsten foils $Rate_{e^+e^-}(h)$ chiral 0.542 5 Anomaly mmm π⁰ 0.591 m 0.650 10 h 0.723 9

Kaon-induced low-t reactions like

 $K^{-}(A, Z) \to K^{-}\pi^{0}(A, Z),$ $K^{-}(A, Z) \to \pi^{-}K^{0}(A, Z),$ $K^{-}(A, Z) \to K^{-}\pi^{0}\pi^{0}(A, Z)$ etc.

OUR COMPETITORS

Pion and kaon partonic structure can be accessed by model-dependent way via Sullivan process at JLab and EIC. The J-PARC kaon beam has too low momentum for such kind of measurements.

We are not aware of any other plans to measure kaon polarisabilities

Kaon spectroscopy: Belle II, BES III, LHCb: in decay of τ-lepton and Dmesons only states with mass below 1.8 GeV will be accessible. Limited dataset from decay of B-mesons. GlueX (JLab): photoproduction of KKππ final state. J-PARC - spectroscopy with low-momentum kaon beam.

STUDY OF THE NUCLEON STRUCTURE AND PROPERTIES

SUMMARY

- No claim to have understood the Standard Model is supportable until an explanation is provided for the emergence and structure of Nambu-Goldstone modes. The meson as a complex QCD system and, in particular, the emergence of hadronic mass is the central part of the proposed AMBER physics program with conventional pion and RF-separated beam, i.e. for both Phase-1 and Phase-2. It will be attacked from several directions:
 - study of the parton structure of mesons via Drell-Yan pair production, charmonia and promptphoton production;
 - investigation of resonant and dynamical properties in spectroscopy;
 - clarification of the Nambu-Goldstone nature of pion and kaon in low-t reactions.
- ► AMBER has intention to study structure and properties of nucleon. The proton-radius puzzle should be solved after precision measurement of proton radius in elastic μp scattering. GPD E should be touched via DVCS and DVMP processes. TMD PDFs will be accessed via \bar{p} -induced Drell-Yan. The flavor-dependent EMC effect will be investigated in pion-induced Drell-Yan process and C/W targets. Production and propagation of polarised vector mesons in nuclear matter will be studied with π and K beams
- The antiproton yield in p-p and p-He collisions will be measured for the purpose of dark matter search in astrophysics experiments.
- > Study of charmonia production in $p\bar{p}$ annihilation will be performed with low-energy antiproton beam.
- The proposal for Phase-1 of the COMPASS++/AMBER project was submitted to the SPSC in May 2019. It includes the proton radius measurement, Drell-Yan and charmonia production using conventional hadron beams and measurements of the antiproton yield in p-p and p-He collisions.