Updates on REDTOP

Rare Eta Decays with a TPC for Optical Photons

R. Carosi, INFN Pisa
Physics Beyond Colliders Working Group Meeting
CERN, 5-6 Nov. 2019
For the REDTOP Collaboration
Updates on REDTOP

• Short reminder of the REDTOP main points
 – (physics, beam, detector,…)

• New sensitivities using better simulation

• Two additional models for BC4 (Dark scalar)
 – Hadrophilic Scalar Mediator
 – Spontaneous Flavor Violation

• Status and plan
Why the η?
- Eigenstate of C,P,CP,G; Goldstone boson
 - Strong and EM decays forbidden in lowest order
 - Contributions from higher order are enhanced by a factor 100,000
 - Decays with leptons in the final state have very small SM background
 - Internal loops and lepton pairs can probe new physics

REDTOP Physics
- >20 interesting channels
- 3(5) are “golden” (will be described in details in the proposal)
- 4 benchmark channels are studied in details for the PBC (2 of them are golden)

REDTOP beam
- $8 \times 10^{12} \, \text{et}/\text{yr}$ for $10^{17} \, \text{POT/yr}$, 1.8 GeV protons
- $8 \times 10^{10} \, \text{et}/\text{yr}$ for $10^{17} \, \text{POT/yr}$, 3.5 GeV protons (phase II)

REDTOP detector
- Optical TPC: use Cherenkov effect for tracking charged particles
- ADRIANO2 (Dual readout calorimeter): for reconstructing EM showers and particle ID
- Fiber Tracker for vertexing

http://redtop.fnal.gov
REDTOP Detector + Magnet
Simulation and PCB benchmarks

- Simulation tools ready (slic, lcsim, ilcroot frameworks)
 - Full simulation, including background and efficiencies
 - Only missing full reconstruction in the OTPC
- 10-15 years timescale and 10^{17} pot/year

Since last workshop (Jan. 2019):
- Secondary vertex reconstruction (BSM particles have long lifetimes)
- Beam transverse profile: $\sigma_y \sim 0.5$ mm (gaussian), $\sigma_x \sim 1$ cm (uniform)
 - it was 1 cm uniform both x and y;
 - now: small σ for more constraints, large σ to separate multiple events
- More constraints in z using target thickness
- Background reduced by a factor 100-300, signal efficiency ~25-35%

Ongoing simulations for PBC benchmarks (Visible final states)
- Dark photons (BC 1) $\eta \rightarrow \gamma A' \rightarrow \ell\ell$
- Dark scalars mixing with the Higgs (BC 4) $\eta \rightarrow \pi^0 H \rightarrow \ell\ell$
- ALP coupled with fermions (BC 10) $\eta \rightarrow \pi\pi a \rightarrow \ell\ell$
- ALP coupled with gluons (BC 11) $p Li \rightarrow p Li a \rightarrow \ell\ell$
PBC benchmarks

Dark photons

Dark scalar mixing with Higgs

BC1

BC4
PBC benchmarks

ALP with fermion coupling

BC10

ALP with gluon coupling

BC11
Light Scalar Meson $\eta \rightarrow \pi S$

$S \rightarrow ee, \mu\mu, \pi\pi$

- **Minimal SM Higgs extension**
 - Viable DM candidates coupling to Higgs portal
 - S-H mixing via mixing angle
 - It couples mostly to top quarks and gluons
 - Favorite exp. techniques: B factories (LHCb)
 - *Disfavorite at REDTOP*

- **Hadrophilic Scalar Mediator**

- **Spontaneous Flavor Violation**
 - Much less constrained by cosmological and EDM bounds
 - It couples mostly to u,d quarks
 - *Favorite exp. Techniques: η/η' factories*
 - Disfavorite at LHCb, Belle
 - Moderate discovery potential with K
Dark scalar coupling
Exclusively to the up quark g_u

KOTO signal:
$K_L \rightarrow \pi^0 \nu \nu$
What if $K_L \rightarrow \pi^0 S$?
“off-shell” sensitivity (2π decay)
Status and Plan

- **Cost:** ~ 50 M$ (including 50 % contingence)
- **Beam:** requires further study (PS, 10^{17} p/yr)
- **Detector**
 - ADRIANO2 new prototype; funded by NIU, INFN
 - Fiber Tracker (LHCb like)
 - OTPC not started
- **Detector/Simulation plan:**
 - Triple readout: disentangle neutron component using time history
 - (contributions after 50 ns from are neutrons only)
 - Full reconstruction for OTPC
 - (improves vertexing and background rejection)
- **Collaboration:** several institutions joined during the last year; still growing
- **Proposal to SPSC after ESPP process**
Summary

- The η/η' meson is an excellent laboratory for studying rare processes
- Existing world samples not sufficient for studying decays violating conservations laws
- REDTOP goal is to produce $\sim 10^{13} \eta$ mesons/year in phase I and $\sim 10^{11} \eta'/year$ in phase II
- Very rich physics program, including “golden” processes:
 - CP violation via Dalitz plot mirror asymmetry
 - Dark photons
 - Scalar meson searches
 - Axion-like particles
- New generation, super-fast detector techniques
- An exciting phase of detector R&D ahead
- Full proposal in preparation
- http://redtop.fnal.gov
Thank you!
$$\eta : \approx \frac{{u\bar{u}+d\bar{d}-2s\bar{s}}}{{\sqrt{6}}}$$

$$\eta' : \approx \frac{{u\bar{u}+d\bar{d}+s\bar{s}}}{{\sqrt{3}}}$$

$$I^G(J^{PC}) = 0^+(0^-+)$$

Mass $m = 547.862 \pm 0.017$ MeV
Full width $\Gamma = 1.31 \pm 0.05$ keV

C-nonconserving decay parameters
- $\pi^+\pi^-\pi^0$ left-right asymmetry = $(0.09^{+0.11}_{-0.12}) \times 10^{-2}$
- $\pi^+\pi^-\pi^0$ sextant asymmetry = $(0.12^{+0.10}_{-0.11}) \times 10^{-2}$
- $\pi^+\pi^-\pi^0$ quadrant asymmetry = $(-0.09 \pm 0.09) \times 10^{-2}$
- $\pi^+\pi^-\gamma$ left-right asymmetry = $(0.9 \pm 0.4) \times 10^{-2}$
- $\pi^+\pi^-\gamma$ β (D-wave) = -0.02 ± 0.07 ($S = 1.3$)

CP-nonconserving decay parameters
- $\pi^+\pi^-e^+e^-$ decay-plane asymmetry $A_\phi = (-0.6 \pm 3.1) \times 10^{-2}$

Dalitz plot parameter
- $\pi^0\pi^0\pi^0$ $\alpha = -0.0318 \pm 0.0015$

PARAMETER $\Lambda IN \eta \rightarrow \mu^+\mu^-\gamma$ DECAY $= 0.719 \pm 0.014$ GeV/c^2
<table>
<thead>
<tr>
<th>Decay Modes</th>
<th>Fraction (Γ_f/Γ)</th>
<th>Scale factor</th>
<th>Confidence level</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2γ</td>
<td>(72.12±0.34) %</td>
<td>S=1.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$3\pi^0$</td>
<td>(39.41±0.20) %</td>
<td>S=1.1</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>$\pi^02\gamma$</td>
<td>(32.68±0.23) %</td>
<td>S=1.1</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>$2\pi^0\gamma$</td>
<td>(2.56±0.22) x 10^{-4}</td>
<td>CL=90%</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>4γ</td>
<td>(2.8 x 10^{-4})</td>
<td>CL=90%</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>invisible</td>
<td>(1.0 x 10^{-4})</td>
<td>CL=90%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Charged modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^0$</td>
<td>(28.10±0.34) %</td>
<td>S=1.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^0$</td>
<td>(22.92±0.28) %</td>
<td>S=1.2</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>$e^+e^-\gamma$</td>
<td>(4.22±0.08) %</td>
<td>S=1.1</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>$\mu^+\mu^-\gamma$</td>
<td>(6.9 ±0.4) x 10^{-3}</td>
<td>S=1.3</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>(3.1 ±0.4) x 10^{-4}</td>
<td></td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>(5.8 ±0.8) x 10^{-6}</td>
<td>CL=90%</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>$2e^+e^-$</td>
<td>(2.40±0.22) x 10^{-5}</td>
<td></td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-e^+e^-(\gamma)$</td>
<td>(2.68±0.11) x 10^{-4}</td>
<td></td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>$e^+e^-\mu^+\mu^-$</td>
<td>(1.6 x 10^{-4})</td>
<td>CL=90%</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>$2\mu^+2\mu^-$</td>
<td>(3.6 x 10^{-4})</td>
<td>CL=90%</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>$\mu^+\mu^-\pi^+\pi^-$</td>
<td>(3.6 x 10^{-4})</td>
<td>CL=90%</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-\nu_\mu + c.c.$</td>
<td>(1.7 x 10^{-4})</td>
<td>CL=90%</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-2\gamma$</td>
<td>(2.1 x 10^{-3})</td>
<td></td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^0\gamma$</td>
<td>(5 x 10^{-4})</td>
<td>CL=90%</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>$\pi^0\mu^+\mu^-$</td>
<td>(3 x 10^{-6})</td>
<td>CL=90%</td>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>

Charge conjugation (C), Parity (P),
Charge conjugation x Parity (CP), or
Lepton Family number (LF) violating modes

<table>
<thead>
<tr>
<th>Decay Modes</th>
<th>C</th>
<th>P.CP</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0\gamma$</td>
<td>< 9 x 10^{-5}</td>
<td>CL=90%</td>
<td>257</td>
</tr>
<tr>
<td>$\pi^+\pi^-$</td>
<td>$P.CP$ < 1.3 x 10^{-5}</td>
<td>CL=90%</td>
<td>236</td>
</tr>
<tr>
<td>$2\pi^0$</td>
<td>$P.CP$ < 3.5 x 10^{-4}</td>
<td>CL=90%</td>
<td>238</td>
</tr>
<tr>
<td>$2\pi^0$</td>
<td>$P.CP$ < 5 x 10^{-4}</td>
<td>CL=90%</td>
<td>238</td>
</tr>
<tr>
<td>$3\pi^0$</td>
<td>$P.CP$ < 6 x 10^{-5}</td>
<td>CL=90%</td>
<td>170</td>
</tr>
<tr>
<td>3γ</td>
<td>$P.CP$ < 1.6 x 10^{-5}</td>
<td>CL=90%</td>
<td>274</td>
</tr>
<tr>
<td>$4\pi^0$</td>
<td>$P.CP$ < 6.9 x 10^{-7}</td>
<td>CL=90%</td>
<td>40</td>
</tr>
<tr>
<td>$\pi^0e^+e^-$</td>
<td>C</td>
<td>[n] < 4 x 10^{-5}</td>
<td>CL=90%</td>
</tr>
<tr>
<td>$\pi^0\mu^+\mu^-$</td>
<td>C</td>
<td>[n] < 5 x 10^{-5}</td>
<td>CL=90%</td>
</tr>
<tr>
<td>$\mu^+e^- + \mu^-e^+$</td>
<td>LF</td>
<td>< 6 x 10^{-6}</td>
<td>CL=90%</td>
</tr>
</tbody>
</table>
BSM Physics Program (\(\eta\) and \(\eta'\) factory)

C, T, CP-violation

- CP Violation via Dalitz plot mirror asymmetry: \(\eta \rightarrow \pi^0 \pi^+ \pi^-\)
- CP Violation (Type I - P and T odd, C even): \(\eta \rightarrow 4\pi^0 \rightarrow 8\gamma\)
- CP Violation (Type II - C and T odd, P even): \(\eta \rightarrow \pi^0 \pi^0 \pi^+ \pi^-\) and \(\eta \rightarrow 3\gamma\)
- Test of CP invariance via \(\mu\) longitudinal polarization: \(\eta \rightarrow \mu^+ \mu^-\)
- Test of CP invariance via \(\gamma^*\) polarization studies: \(\eta \rightarrow \pi^+ \pi^- e^+ e^-\) and \(\eta \rightarrow \pi^+ \pi^- \mu^+ \mu^-\)
- Test of CP invariance in angular correlation studies: \(\eta \rightarrow \mu^+ \mu^- e^+ e^-\)
- Test of T invariance via \(\mu\) transverse polarization: \(\eta \rightarrow \pi^0 \mu^+ \mu^-\) and \(\eta \rightarrow \gamma \mu^+ \mu^-\)
- CPT violation: \(\mu\) polariz. in \(\eta \rightarrow \pi^+ \mu^- \nu\) vs \(\eta \rightarrow \pi^0 \mu^+ \nu\) and \(\gamma\) polarization in \(\eta \rightarrow \gamma \gamma\)

Other discrete symmetry violations

- Lepton Flavor Violation: \(\eta \rightarrow \mu^+ e^- + c.c.\)
- Double lepton Flavor Violation: \(\eta \rightarrow \mu^+ \mu^+ e^- e^- + c.c.\)
BSM Physics Program (η and η’ factory)

New particles and forces searches

- Scalar meson searches (charged channel): $\eta \rightarrow \pi^0 H$ with $H \rightarrow e^+e^-$ and $H \rightarrow \mu^+\mu^-$
- Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow l^+l^-$
- Protophobic fifth force searches: $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow e^+e^-$
- New leptophobic baryonic force searches: $\eta \rightarrow \gamma B$ with $B \rightarrow e^+e^-$ or $B \rightarrow \gamma \pi^0$
- Indirect searches for dark photons new gauge bosons and leptoquark: $\eta \rightarrow \mu^+\mu^-$ and $\eta \rightarrow e^+e^-$
- Search for true muonium: $\eta \rightarrow \gamma (\mu^+\mu^-)|_{2M_{\mu}} \rightarrow \gamma e^+e^-$

Other Precision Physics measurements

- Proton radius anomaly: $\eta \rightarrow \gamma \mu^+\mu^-$ vs $\eta \rightarrow \gamma e^+e^-$
- All unseen leptonic decay mode of η / η' (SM predicts 10^{-6} - 10^{-9})
BSM Physics Program (η and η’ factory)

Non-η/η’ based BSM Physics
- Dark photon and ALP searches in Drell-Yan processes: \(qq\bar{q} \rightarrow A'/a \rightarrow l^+l^- \)
- ALP’s searches in Primakoff processes: \(pZ \rightarrow pZ a \rightarrow l^+l^- \) (F. Kahlhoefer)
- Charged pion and kaon decays: \(\pi^+ \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+e^- \) and \(K^+ \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+e^- \)
- Neutral pion decay: \(\pi^0 \rightarrow \gamma A' \rightarrow \gamma e^+e^- \)

Non-BSM Physics Program (η and η’ factory)

High precision studies on low energy physics
- Nuclear models
- Chiral perturbation theory
- Non-perturbative QCD
- Isospin breaking due to the u-d quark mass difference
- Octet-singlet mixing angle
- \(\pi\pi \) interactions
- Electromagnetic transition form-factors (important input for g-2)
- Lots of other bread&butter physics
η Samples – Present and future

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Technique</th>
<th>Total η</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB @AGS</td>
<td>$\pi p \to \eta n$</td>
<td>10^7</td>
</tr>
<tr>
<td>CB @MAMI-B</td>
<td>$\gamma p \to \eta p$</td>
<td>2×10^7</td>
</tr>
<tr>
<td>CB @MAMI-C</td>
<td>$\gamma p \to \eta p$</td>
<td>6×10^7</td>
</tr>
<tr>
<td>KLOE @DAFNE</td>
<td>$e^+e^- \to \Phi \to \eta \gamma$</td>
<td>5×10^7</td>
</tr>
<tr>
<td>WASA @COSY</td>
<td>$pp \to \eta pp \quad pD \to \eta ^3He$</td>
<td>$\geq 10^9$ (unt.) 3×10^7 (tagged)</td>
</tr>
<tr>
<td>CB @MAMI 10 wk (proposed 2014)</td>
<td>$\gamma p \to \eta p$</td>
<td>3×10^8</td>
</tr>
<tr>
<td>Phenix @RHIC</td>
<td>$dAu \to \eta X$</td>
<td>5×10^9</td>
</tr>
<tr>
<td>Hades @GSI</td>
<td>$pp \to \eta pp \quad pAu \to \eta X$</td>
<td>4.5×10^8</td>
</tr>
<tr>
<td>Near future samples:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GlueX @JLAB (just started)</td>
<td>$\gamma p \to \eta p \to \text{neutrals}$</td>
<td>4.5×10^7/year</td>
</tr>
<tr>
<td>JEF @JLAB (recently approved)</td>
<td>$\gamma p \to \eta X \to \text{neutrals}$</td>
<td>3.9×10^5/day</td>
</tr>
<tr>
<td>REDTOP @FNAL (proposing)</td>
<td>$p Be \to \eta X$</td>
<td>2.5×10^{13}/year</td>
</tr>
</tbody>
</table>
REDTOP – Golden Channel I

CP violation from Dalitz plot mirror asymmetry in \(\eta \rightarrow \pi^+ \pi^- \pi^0 \)

- It is an Isospin-violating decay
- EM contributions are known to be strongly suppressed
- It can occur via Strong Interactions due to the mass difference \(m_u - m_d \)
- Any mirror-asymmetry in the Dalitz plot is an indication of CP and C violation
- Good for testing the Chiral Perturbation Theory
- Current PDG limits consistent with no asymmetry
- Largest data samples: WASA 2014 (1.2x10^7), KLOE2 2016 (4.7x10^6)
- REDTOP expected sample: 10^9 analyzed events.
- Test of CP invariance via \(\gamma \) polarization studies, as in \(\eta \rightarrow \pi^+ \pi^- \gamma; \gamma \rightarrow l^+l^- \) (golden channel)
REDTOP – Golden Channel II

Dark photon searches:

\[\eta \rightarrow \gamma A' ; \quad A' \rightarrow \gamma l^+l^- \]

- **Motivations:**
 - Possible cosmic ray excesses from dark matter annihilation
 - Structures anomalies in dwarf galaxies (*Pospelov and Ritz, 2008; Arkani-Hamed et al., 2008*)
 - The muon g-2 anomaly.

- Most accredited model has A' mass is the MeV-GeV range, coupling to to SM charged particles with a strength \(\sim 10^{-3}-10^{-4} \) of that of the photon

- REDTOP could complement the new experiments at JLAB and Frascati with \(\gamma \) and e-beams.

- REDTOP can also make a clear statement on similar searches (\(\gamma e^+e^- \)) of the proposed 17 MeV super-weak gauge boson (*S.Gardner at al., 2016, arXiv:1608.03591*) – [Golden channel lia].

 - \(\eta \rightarrow \gamma X_{17}; \quad X_{17} \rightarrow e^+e^- \)
 - Below WASA sensitivity.
REDTOP – Golden Channel III

Search for light scalar mesons

$$\eta \rightarrow \pi^0 H ; \quad H \rightarrow l^+l^-$$

- Existence of this light scalar particle can significantly enhance this BR compared to the SM value ($\sim 10^{-9}$)
- REDTOP expected sensitivity is better than 10^{-10}
 - Current limits are $\sim 10^{-5} – 10^{-6}$
- Implications for the R_p anomaly. [Golden channel IIIa]
 - $\eta \rightarrow \gamma l^+l^-$
 - Conventional methods (levels of muonic atoms and elastic scattering experiments) find a discrepancy of about 7σ.
REDTOP – Search for Axion Like Particles

• ALP’s with fermion couplings
 - $\eta \rightarrow \pi \pi \ a \ ; \ a \rightarrow l^+l^-$

• ALP’s with gluon couplings
 - Not associated with η/η' decays
 - Drell-Yan processes: $qq\overline{q} \rightarrow a \rightarrow l^+l^-$
 - Proton bremsstrahlung: $pN \rightarrow pN \ a \ ; \ a \rightarrow l^+l^-$
 - Primakoff processes: $pZ \rightarrow pZ \ a \ ; \ a \rightarrow l^+l^-$
Effects of new simulation
(secondary vertexes, beam profile, z-target, optimized cuts)

<table>
<thead>
<tr>
<th>Benchmark channel</th>
<th>Signal efficiency (%)</th>
<th>Background efficiency (%)</th>
<th>Largest background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark photon (BC1)</td>
<td>34</td>
<td>0.3</td>
<td>$\eta \rightarrow \gamma e^+e^-$</td>
</tr>
<tr>
<td>Dark scalar (BC4)</td>
<td>30</td>
<td>0.2</td>
<td>$\eta \rightarrow \gamma e^+e^-$</td>
</tr>
<tr>
<td>ALP “fermion dominance” (BC10)</td>
<td>35</td>
<td>0.2</td>
<td>$\eta \rightarrow \pi^+\pi^-e^+e^-$</td>
</tr>
<tr>
<td>ALP “gluon dominance” (BC11)</td>
<td>24</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>
PBC benchmarks

(PBC, Cern 5-6 Nov. 2019)

Dark photons

Dark scalar mixing with Higgs
PBC benchmarks
(PBC, Cern 5-6 Nov. 2019)

ALP with fermion coupling

ALP with gluon coupling
KOTO results

4 events, \(BR(K_L \to \pi \nu \nu) \sim 2 \times 10^{-9} \), \(BR(K_L \to \pi \nu \nu)_{SM} = (3.4 \pm 0.6) \times 10^{-11} \)

\(K_L \to \pi^0 \ S \ ?? \)
KOTO/NA62 results

From arXiv 1909.11111: Kitahara, Okui, Perez, Sorez, Tobioka

New physics implications of recent search for $K_L \to \pi\nu\bar{\nu}$ at KOTO
REDTOP Running Phases
(original plan)

- Intermediate phases (during detector R&D, OTPC only)
 - 7Li → 8Be → e+e−X
 - 2H → 3He e+e− (M.Viviani et al.)
 - More possible beams (p/μ/e)
- Phase I: η factory
- Phase II: η' factory
- Phase III: Dark photons radiating from muons
- Phase IV: Muon Scattering Experiment (optional)
- Phase V: Tagged REDTOP (at PIP-II)
- Phase VI: Rare Kaon Decays: $K^+ \rightarrow \pi^+ \nu\bar{\nu}$ (depending on NA62, JPARC)
Why the η?

- Decays are flavor conserving
- Eigenstate of C, P, CP and G: $I^GJ^{PC}=0^+0^-$
 - can be used to test C and CP invariances
- Very narrow state (1.3 keV) – overconstraints events → low background
- Strong decays forbidden in lowest order by C, P, CP, G, and Isospin invariance
- EM decays forbidden in lowest order by C and angular momentum conservation
 - contributions from higher orders are enhanced by a factor of $\sim 100,000$
 - η decays with leptons in the final state have very small SM backgrounds
 - Internal loops and lepton pairs can probe new physics
- η is an excellent laboratory to search for physics Beyond Standard Model
REDTOP Key Points

- Yield of \(8 \times 10^{12}\) \(\eta\) mesons/year for \(10^{17}\) POT
 - Possibly \(\sim 8 \times 10^{10}\) \(\eta\)’ mesons/years in a second phase

- 3 (5) “golden” channels (will be described in details in the proposal)
 - But at least \(\sim 20\) interesting channels (symmetry violations, new particles and forces searches, precision measurements)
 - 4 benchmark channels are studied in details for the PBC (2 of them are golden)

- Innovative detector techniques
 - Dual readout calorimeter
 - Optical TPC
 - Detector blind to protons and slow pions
 - \(4\pi\) detector coverage (almost)

- Significant improvement (10^6 in some cases) to the current limits.

- \texttt{http://redtop.fnal.gov}
Beam and η yield

- Incident proton energy ~ 1.8 GeV (3.5 for η')
- Continuous beam, 10^{17} POT/yr
 - At Fermilab: $\sim 10^{18}$ p/yr
- Target system: 10x0.5 mm Li or 10x0.33 mm Be spaced 10 cm apart
 - Low Z (primary hadrons multiplicity $\sim A^{1/3}$)
- Large beam spot size (~ 1 cm) with small divergence ($<1^0$)
- p-inelastic production (event rate): 2×10^8 evts/sec
- Eta production: 8×10^{12} η/year
 - At Fermilab: 8×10^{13} η/year
- Possible second phase (η'): 8×10^{10} η/year
 - At Fermilab: 8×10^{11} η/year
Detection Techniques

Charged Tracks Detection
- Use Cherenkov effect in an Optical-TPC for tracking charged particles
- Baryons and most pions are below Cherenkov threshold
- Electrons and most muons are detected and reconstructed
- Fiber-tracker for vertexing and rejection of gamma conversion (being investigated)

Gamma Detection
- Use ADRIANO2 calorimeter for reconstructing EM showers
- Resolution <5%/sqrt(E)
- PID from dual-readout to disentangle showers from γ/μ/hadrons
- 96.5% coverage
- High granularity
- Good time resolution (<100 psec) for high rate DAQ

ADRIANO: A Dual-Readout Integrally Active Non-segmented Option
The REDTOP Detector

Optical TPC
- ~ 1m x 1.5 m
- CH₄ @ 1 Atm
- 5x10⁵ Sipm/Lappd
- 98% coverage

Solenoid
0.6-0.8 T

10x Be targets
- 0.33 mm thin
- Spaced 10 cm

ADRIANO2 Calorimeter (tiles)
- Scint. + heavy glass sandwich
- 20 X₀ (~ 64 cm deep)
- Triple-readout +PFA
- 96% coverage

μ-polarizer
Active version (from TREK exp.)

Aerogel
Dual refractive index system

Fiber tracker being investigated (for rejection of γ-conversion and vertexing)
Resolution ~66μm/point
Disclaimers

• The contents in this text are subject to change without a notice
• Reading this presentation impairs your ability to drive a car or operate a machinery
• If infection, rash, or irritation develops, discontinue use and consult a physician
• This presentation has been found to cause drowsiness in laboratory animals
• Caution: FLAMMABLE – Do not read while smoking or near a fire
• Warning: for external use only. Use only as directed. Intentional misuse by deliberately concentrating contents can be harmful or fatal. Keep out of reach of children
• In the unlikely event of a water landing do not use this presentation as a flotation device
• The material in this text is fiction; any resemblance to real persons, living or dead, is purely coincidental
• The surgeon general has determined that excessive reading of this presentation is detrimental to your health