AWAKE++ particle physics applications

A. Hartin

UCL

(with input from AWAKE and AWAKE++ teams)

CERN PBC Meeting Nov 5th, 2019

LEVERHULME TRUST _____

AWAKE++ Goals

[W. Bartmann et al, AWAKE++, CERN-PBC-REPORT-2018-005]

 Goals for AWAKE Run 1 (2016-2018) achieved: Self modulation of proton bunch in plasma, Electron capture and GeV level acceleration

• AIMs for run 2 (2021-2024):

- Scalable acceleration: 0.5-1 GV/m, 100 pC
- Control emittance to $\sim 20~{\rm mm}$ mrad
- High energy electron beams (to order 10 GeV)
- Goals after the end of run 2: Increase beam energy (≥ 50 GeV). Use beams for novel and worthwhile physics experiments
- We are studying three possible experiments (will only discuss first two)
 - Dark photon beam dump experiment
 - Non perturbative QFT tests
 - High energy ep collisions

AWAKE Dark Photon beam dump experiment

[A. Caldwell et al, AWAKE Particle physics applications, arXiv:1812.11164]

Parameter	AWAKE-upgrade-type	HL-LHC-type	
Proton energy E_p (GeV)	400	450	
Number of protons per bunch Np	3×10^{11}	2.3×10^{11}	
Longitudinal bunch size protons σ_z (cm)	6	7.55	
Transverse bunch size protons σ_r (µm)	200	100	
Proton bunches per cycle np	8	320	
Cycle length (s)	6	20	
SPS supercycle length (s)	40	40	
Electrons per cycle Ne	2×10^9	5×10^9	
Number of electrons on target per 12 weeks run	4.1×10^{15}	2×10^{17}	

Table 2: Potential achievable number of electrons on target for an AWAKE-based fixed target experiment for two different drive beam configurations. Assumes a 12 week experimental period with a 70% SPS duty cycle.

- What is dark matter? BSM mechanism, mixing ϵ to SM
- $\circ~$ Dark photon searches making good progress $(m_{A'},\epsilon)$ coverage
- AWAKE can contribute to the global effort through increased luminosity
- $\circ~5x10^9~\text{EOT}$ per bunch $\rightarrow 10^{16}$ per year
- Simulated beam target dark photon experiment (Based on NA64 software)
- Full study in GEANT to understand backgrounds
- Analytic/GEANT studies to generate sensitivity (m_{A'}, ε)

Analytic sensitivity: luminosity, energy, decay angle

01

may (GeV)

0.01

- Dark photon mass, coupling $m_{\mathsf{A}'}, \, \epsilon$
- Bremsstrahlung spectrum $I_e(E_e, z_{targ})$
- Dark photon x-sect, $\frac{d\sigma}{dE_{A'}}(E_e, E_{A'})$
- Dark photon decay rate, $\Gamma_{\mathsf{A}'}(m_e,m_{\mathsf{A}'},\epsilon)$
- Decay length, $l_{A'} = \frac{1}{\Gamma_{A'}} \sqrt{\left[\frac{E_{A'}}{m_{A'}}\right]^2 1}$
- Expt constraints (target, decay volume lengths), $E_{\rm c} = e^{-l_{\rm targ}/l_{\rm A'}} - e^{-l_{\rm DV}/l_{\rm A'}}$
- Dark photon spect, $I_{\rm A'} = \int {\rm d}z \, {\rm d}E_e \, I_{\rm e} \frac{{\rm d}\sigma}{{\rm d}E_{\rm A'}}$
- No. of A', $N_{A'} = \frac{N_0 X_0}{A} \int dE_{A'} I_{A'} E_c$
- 90% confidence limit=2.44 events
- Step function acceptance based on approx radiation angles $(Z \rightarrow \gamma', \gamma' \rightarrow e^+e^-)$

AWAKE/dark photon sensitivity reach (2018)

[J. Beacham et al, BSM working group, CERN-PBC-REPORT-2018-007]

- $\circ~$ Preliminary AWAKE/Dark Photon $\epsilon, M_{A'}$ landscape obtained
- \sim Visible A' $\rightarrow e^+e^-$ decays
- Based on GEANT studies, well separated hits in the tracker planes (> 1 mm transverse)
- 50 GeV AWAKE electron bunches on target covers new ground
- Future 1 TeV AWAKE electrons even more beneficial
- Background studies will be extended
- Other channels will be investigated $(A' \rightarrow \mu^+ \mu^-, A' \rightarrow \text{invisible})$

Tracker and target optimisation

- Optimise tracker transverse size (acceptance) and target thickness (backgrounds)
- Can tolerate no more than 1000 bkg hits per 1e9 seeds (1 bunch).
- Magnetic field can help separate signal/background
- Sensitivity contour coverage is a trade off (acceptance vs bkgs)

Non-perturbative electron/laser experiments

[A. Hartin, IJMP A33 1830011 (2018), M. Altarelli et al. arXiv:1905.00059]

- Test non-perturbative QFT in ultra intense, relativistic *e* /laser collisions
- Intense background field polarises the vacuum. Particles gain effective complex mass
- Nonlinear Compton, trident pair production, higher order strong field resonances, even BSM searches! "boil the vacuum"
- Parameters to maximise non-perturbative events, most energetic electrons available at XFEL, ultra-intense lasers and expertise on hand

High intensity Compton scattering mass shift of multiphoton Compton edges

Pair production via Trident per 10⁷ electrons per 100 fs

Experiment	$\lambda(nm)$	Elaser (J)	focus (μm^2)	pulse (fs)	$E_{e^{-}}(\text{GeV})$	ξ	X
SLAC E144	527/1053	2	50	1880	46.6	0.66	2.7
LUXE Phase0	800	0.35	100	35	17.5	1.54	0.29
LUXE Phase1	800	7	100	35	17.5	6.9	1.29
FACET II	800	0.7	64	35	10	2.3	0.29
ELI-NP	1053	2.2	100	22	0.750	6.4	0.04
AWAKE	800	3	64	20	50	7.45	4.0

 ξ is laser intensity parameter, χ is electron recoil parameter

Strong Field QFT: polarising the vacuum

Schwinger limit

- Quantum vacuum becomes more dispersive with field strength
- At Schwinger limit quantum vacuum decays into a real pair
- $\circ~$ The Schwinger critical field $(E_{\rm cr}=m_e^2c^3/e\hbar=1.32\times 10^{18}~{\rm V/m})$
- How do we incorporate these vacuum changes into our theories?

Anomalous magnetic moment

$$\frac{\Delta \mu}{\mu_0} = \frac{\alpha}{2\pi} \int_0^\infty \frac{2\pi \, dx}{(1+x)^3} \left(\frac{x}{\Upsilon}\right)^{1/3} \operatorname{Gi}\!\left(\frac{x}{\Upsilon}\right)^{1/3} \ \, \\$$

- There is a predicted strong field correction to the AMM. strong field
- $\circ~\Upsilon, (\chi_e)$ is the external field strength in electron (muon) rest frame
- Strong field "running" of the QED coupling. A background field changes the QED vacuum

Furry Picture - a non perturbative, semi classical QFT

• Separate gauge field into external A_{μ}^{ext} and quantum A_{μ} parts. Shift A_{μ}^{ext} into Dirac Lagrangian

$$\mathcal{L}_{\mathsf{QED}}^{\mathsf{Int}} = \bar{\psi}(i\partial - m)\psi - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}(\mathbf{A}^{\mathsf{ext}} + \mathbf{A})\psi$$

$$\stackrel{\mathsf{PPD}}{=} = \bar{\psi}^{\mathsf{FP}}(i\partial - e\mathbf{A}^{\mathsf{ext}} - m)\psi^{\mathsf{FP}} - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}^{\mathsf{FP}}\mathbf{A}\psi^{\mathsf{FP}}$$

• Lagrangian satisfies Euler-Lagrange equation \rightarrow new equation of motion for the non-pertubative (bound) Dirac field (w.r.t. A^{ext}). New solutions ψ^{FP}

$$(i\partial -eA^{\text{ext}}-m)\psi^{\text{FP}}=0$$

• For certain classes of external fields (plane waves, Coloumb fields and combinations) exact solutions exist [Volkov Z Physik 94 250 (1935), Bagrov and Gitman, Exact solutions of relativistic wave equations (1990)]

$$\psi^{\mathsf{FP}} = \mathbf{E}_p \ e^{-ipx} \ u_p, \quad \mathbf{E}_p = \exp\left[-\frac{1}{2(k \cdot p)} \left(e\mathbf{A}^{\mathsf{ext}} k + i2e(A^e \cdot p) - ie^2 \mathbf{A}^{\mathsf{ext}2}\right)\right]$$

Non perturbative QED: Decays, Resonant production

Trident process (one step and two step)

One photon pair production (OPPP)

Photon splitting (vacuum birefringence)

OPPP and Schwinger critical field measurement

[A. Hartin, A. Ringwald, N. Tapia arXiv:1807.10670]

OPPP rate, non perturbative regime

OPPP Rate at constant χ reaches non perturbative asymptote for $\xi > 1$

$$\Gamma_{\text{OPPP}} = \frac{\alpha m^2}{2\omega_{\text{i}}} \sum_{s>s_0}^{\infty} \int_{-1}^{v_s} \frac{dv}{v\sqrt{v(v-1)}} \left[\mathbf{J}_s^2 + \frac{\xi^2}{2} (2v-1) \left(\mathbf{J}_{s+1}^2 + \mathbf{J}_{s-1}^2 - 2 \mathbf{J}_s^2 \right) \right] \propto \frac{\alpha m^2}{2\omega_{\text{i}}} \frac{E}{E_c} \exp\left[-\frac{8mE_c}{3\omega_i E} \right]$$

Theory: $E_c = \frac{m^2}{m}$. Experiment: $E_c = \dots$ It can now be measured in the lab

- 1. Successful AWAKE Run I. Run II goals: order 10 GeV beams, scalability, good beam qualities
- 2. Beyond run II: energetic AWAKE beams for novel experiments
- 3. Dark photon beam dump experiment with AWAKE bunches. Increased luminosity, energy gives additional $M_{A'}$, ϵ sensitivity reach
- 4. Non perturbative QFT tests with intense laser interactions: vacuum polarisation, birefringence, Schwinger pair creation