Resolving the Mass Hierarchy

Jun Cao

Institute of High Energy Physics

Gordon Research Conference on "New Tools for the Next Generation of Particle Physics and Cosmology", HKUST, Hong Kong, Jun.30-Jul.4, 2019

Neutrino Mixing

Mass Hierarchy

Mass hierarchy: Which neutrino is the lightest?

- Impacts on oscillation probability, MH and CP degeneracy.
- Roadmap for 0vββ experiment
- Understanding the mass origin and neutrino mixing in theory Some GUT theories predict normal MH
- Nucleosynthesis in supernova, neutrino mass scale

MH with Reactors

MH with Matter Effect

- Both ν_e appearance channel and ν_μ disappearance channel.
- Matter effect (aL) and CP asymmetry for neutrino and antineutrino due to electron in matter. Large effect at long distance.
- DUNE at 1300 km resolves degeneracy of MH and δ_{CP}

$$P_{vac}(\nu_{\mu} \rightarrow \nu_{e}) = P_{atm} + P_{sol} + P_{int}$$

$$\sin \Delta_{ij} \rightarrow \frac{\Delta_{ij}}{\Delta_{ij} \pm aL} \sin(\Delta_{31} \pm aL)$$

$$P_{mat}(\nu_{\mu} \rightarrow \nu_{e}) \approx (1 \pm 2 \frac{E}{12 \text{ GeV}}) P_{vac}(\nu_{\mu} \rightarrow \nu_{e})$$

Appearance channel: Accelerator w/ v and \bar{v} NOvA, DUNE

MH with absolute Δm^2

NH: $|\Delta m_{31}^2| - |\Delta m_{32}^2| = +\Delta m_{21}^2$ IH: $|\Delta m_{31}^2| - |\Delta m_{32}^2| = -\Delta m_{21}^2$ $\Delta m_{21}^2 \sim 3\% |\Delta m_{31}^2|$

JUNO	Statistics	+BG +1% b2b +1% EScale +1% EnonL	
$\sin^2 \theta_{12}$	0.54%	0.67%	
Δm^2_{21}	0.24%	0.59%	
Δm^2_{31}	0.27%	0.44%	

MH with Supernova/Cosmology

- **Supernova burst**
- Pre-Supernova
- Cosmology determine

 (Σm=m₁+ m₂+ m₃) to 0.1 eV
 |Δm²₃₂|~2.5×10⁻³ eV²
 Δm²₂₁~7×10⁻⁵ eV²

K.N.Abazajian 2015 Astropart. Phys. 63 66

Current Experiment – Super-K

Current Experiment - NOvA

- Fermilab (700kW) to Minnesota (810 km). 14 kt LS detector
- Prefer NH at 1.8σ
- Extended running through 2024, proposed accelerator improvement
 - ⇒ 3σ (if NH and $\delta_{CP}=3\pi/2$) for allowed range of θ_{23} by 2020
 - $\Rightarrow 3\sigma \text{ for } 30\text{-}50\% \text{ (depending on octant) of } \delta_{CP} \text{ range by } 2024.$

Large θ_{13} enables MH determination

Next Generation Oscillation Exp

DUNE in US, 10-40 kton Liquid Argon

JUNO: 20 kton Liquid Scintillator

INO in India, 50 kton Iron+RPC

PINGU at South Pole

Hyper-K, T2HK in Japan, 260 kton water

ORCA in Mediterranean

JUNO Detector

Jiangmen **U**nderground **N**eutrino **O**bservatory, a multiple-purpose neutrino experiment, proposed in 2008, approved in 2013, online in 2021

LS | 12cm acrylic | 2.35m water | SS lattice+PMTs | 1.2m water+PMT | HDPE

20 kton LS detector

- $3\%/\sqrt{E}$ energy resolution
- Rich physics possibilities
 - Reactor neutrino
 for Mass hierarchy and
 precision measurement of
 3 oscillation parameters
 - ⇒ Supernova neutrino
 - ➡ Geo-neutrino
 - Solar neutrino
 - ➡ Proton decay
 - ⇒ Exotic searches

Location of JUNO

State-of-Art LS Detector

	Daya Bay	BOREXINO	KamLAND	JUNO
Target Mass	~20 t	~300 t	~1 kt	~20 kt
Photoelectron Yield (PE/MeV)	~160	~500	~250	~1200
Photocathode Coverage	~12%	~34%	~34%	~78%
Energy Resolution	~8%/√E	~5%/√E	~6%/√E	3%/√E

- Unprecedented energy resolution (3%)
 - ➡ PMT Coverage 78%
 - \Rightarrow PMT Detection Eff. > 27%
 - ⇒ LS attenuation length > 20 m
 - ➡ Calibration
- Low background (e.g. 1 ppt for acrylic, 10⁻¹⁵ to 10⁻¹⁷ for LS)
- 20 times more statistics, mechanical challenges
 - → Refresh many studies by an order

Mass Hierarchy Sensitivity

	Ideal	Core distr.	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	$52.5\mathrm{km}$	Real	1%	4.5%	0.3%	1%
$\Delta\chi^2_{ m MH}$	+16	-4	-1	-0.5	-0.1	+8

JUNO Progress

- Completed slope and vertical tunnel. Excavating exp. hall. Delay due to unexpected underground water.
- Detector R&D and fabrication on schedule
 - ⇒ Most major components contracted
 - ⇒ 15k 20-in PMTs (PDE 28%, 30%) and 18k 3-in PMTs received.
 - ⇒ 1st acrylic panel (8x3x0.12m) qualified. Start batch production

JUNO-TAO

- Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution LS detector at 30 m from the core, a satellite exp. of JUNO.
- Measure reactor neutrino spectrum w/ sub-percent E resolution.
 - ⇒ Model-independent reference spectrum for JUNO
 - ⇒ Benchmark for investigation of the nuclear database
- Ton-level Liquid Scintillator (Gd-LS)
- Full coverage of SiPM w/ PDE > 50%
- Operate at -50 °C (SiPM dark noise)
- 4500 p.e./MeV
- Taishan Nuclear Power Plant, 30-35 m from a 4.6 GW_th core
- 2000 IBD/day (4000)
- Online in 2021

DUNE/LBNF

- 1.2 MW upgradable to 2.4MW
- 4 10-kt LAr TPC modules, staged
- 2024 first module, 2026 beam on

> 5σ for all CP in 7 years

60-120 GeV proton beam

Hyper-K

- 260 kt water Cherenkov detector
- 186 kt fiducial, 10× Super-K
- Photon sensitivity 2× Super-K
- Construction 2020, complete 2027
- Possible 2nd detector in Korea

M. Shiozawa, neutrino2018

Atmospheric

ORCA

Earth matter effect maximum difference IH \leftrightarrow NH at θ =130° (7645 km) and Ev = 7 GeV

Systematics

- PID 90% correct for e, 70% correct for μ at 10 GeV
 - Angular resolution, energy resolution

Mass Hierarchy

NOvA: certain chance JUNO: 2021, 3-4σ in 6y DUNE: 2026 Hyper-K: 2027 ORCA: 202x, 3σ in 4y PINGU: 202x **INO: Paused**

Just for demonstration. It depends on real schedule, real value of parameters, operation assumption, systematic assumption, etc.

Summary

- Neutrino Mass Hierarchy has profound impacts to neutrino physics, GUT, astrophysics and cosmology
- Current measurements ~2σ
- Several coming experiments will firmly determine the MH with different sources (reactor, accelerator, atmospheric) and different technologies (liquid scintillator, liquid Argon TPC, water, etc.), and with astrophysics.

Thank you for you attention!