Gamma-Ray Astronomical Experiments

Gordon Research Conference Hong Kong, 29th June - 5th July 2019 D. della Volpe - Université de Genève Domenico.dellavolpe@unige.ch

FACULTÉ DES SCIENCES

What we know/guess of about cosmic rays

• In the end CRs are the 4th substance of the visible Universe (after the matter, radiation and magnetic fields) lla Volpe

KASCADE(SIBYLL)

- Cosmic Particle Acceleration – What is their impact on the environment?
- Probing Extreme Environments Processes close to neutron stars and black holes – Processes in relativistic jets, winds and explosions – Exploring cosmic voids
- Physics frontiers beyond the Standard Model of light a constant for high-energy photons? – Do axion-like particles exist?

y-ray Science

– How and where are particles accelerated? – How do they propagate?

– What is the nature of Dark Matter? How is it distributed? – Is the speed

What we can learn from γ -ray

Gamma ray flux composition

superposition of resolved point and diffuse sources, and of background diffuse emission of galactic/extragalactic origin

 $\phi_{\text{diffuse}}^{\text{Extragalactic}}(E,\Omega) = \phi_{\text{unresolved sources}}^{\text{Extragalactic}}(E) + \phi_{\text{diffuse}}^{\text{Extragalactic}}(E,\Omega)$

How far can we see: the γ Horizon

Whole universe visible Beamed sources, time variability

> Precision study of local EG sources, resolved morphology

Precision study of Galactic CR sources, up to the knee

The atmosphere is a calorimeter

Isothermal Hydrostatic atmosphere

 $\rho(z) = \rho_0 e^{-z/z_0}$ $z_0 = RT/gM = 8.4 km$

1st Interaction:

 $X_0 \simeq 37 \, g/cm^2$ $\lambda_{pair} = 9/7 X_0 \simeq 50 \ g/cm^2$ $X = X_A e^{-z/z_0}$ and $X_A \simeq 10^3 g/cm^2$ $z_{pair} = z_0 \ln(X_A/\lambda_{pair}) \rightarrow 25 \ km$

Shower Max

 $X_{max} \simeq X_0 \ln (E/E_C) / \ln 2$ $z_{max} = z_0 \ln(X_A/X_{max})$ $30 \text{ GeV} \rightarrow 12 \text{ km}$ $1 TeV \rightarrow 8 km$ $1 PeV \rightarrow 5 km$

- For a vertical shower, it is a calorimeter of about 26 X_0 (radiation length) and 15 λ (interaction length)
- ATLAS calorimeter has **27** X_0 . and **11** λ !

Landau-Pomeranchuk Migdal Effect

- at ultrahigh energies Landau Pomeranchuk Migdal effect:
 - quantum mechanical interference between amplitudes from different scattering centers;
 - relevant scale formation length length over which highly relativistic electron and photon split apart.
 - ▶ interference (generally) destructive \rightarrow reduced cross section for a given, very high photon energy
 - Effect visible for $E(1-x) > E_{LPM}$
 - ► *E*_{LPM}=7.7 *X*₀ *TeV/cm*

D. della Volpe - Zakopane 2019

dN/dx

Ĕ

conversion probability

Geomagnetic pre-Showering

Interaction probability (strong field)

A UHE gamma ray crossing magnetic field lines can produce, e[±] pair which synchrotron-radiate in the magnetic field, producing additional high-energy gamma rays.

A different cascade develops but the global effect is similar to adding some radiation lengths above the atmosphere

Ground-base Cosmic-ray physics

EAS Detectors (HAWC, LHAASO)

Cherenkov Telescopes HESS, MAGIC, VERITAS, CTA

	EAS-D	IACT
Duty-Cycle	High (≈100%)	Low (≈10-15%)
Field-of-View	Large (2 sr)	Small (4-5 deg)
Sensitivity	Good Sensitivity (5-10% Crab flux)	High Sensitivity (< mCrab flux)
Maximum Energy	~ PeV	<100 TeV
Energy Resolution	Modest (~30-40%)	Very Good (~15%)
Energy Threshold	High (~TeV)	Very Low (~10 GeV)
Angular resolution	Good (0.2-0.8 deg)	Excellent (≈0.05 deg)
Effective Area	decrease with zenith	increase with zenith
Background rejection	Good (~80%)	Excellent (>99%)
Zenith dependence	Very Strong ($[\cos\vartheta]^7$)	Weak ($[\cos\vartheta]^{2.7}$)

HAWC

Mexico

Pierre Auger Argentina Celhurco Licer Auger - Colhubco Flucrescence Telbscope

A STATE

mage is 2000 Digital IS 2000 Greek Spot in Image (2000) Box

Google

North - Canary Island South - Paranal - Chile

 $E_{i}E_{i}$

UV-optical reflecting mirrors focussing flashes of Cherenkov light produced by air-showers onto ns-sensitive cameras.

11

Imaging Air Cherenkov Telescope

Hadrons/ γ separation is fundamental

proton

– 20000 m

FF

Hadrons/ γ separation is fundamental

Image Shape → Particle type Intensity of the Image → Shower Energy **Orientation of the image** → Shower Direction

Hillas Parameters

- \rightarrow L = length and W = width of the ellipse
- → SIZE (total image amplitude)
- → d nominal distance (between the centre of the camera and the image centre of gravity)
- $ightarrow \phi$ azimuthal angle of the image main axis
- $\rightarrow \alpha$ orientation angle

THE CTA CONSORTIUM

31 Countries over 200 Institutes over 1400 Members

Design Driver - Full Sky sensitivity

e.g. Galactic objects

Newly born pulsars and the supernova remnants

- have typical brightness such that HESS etc can see only relatively local (typically at a few kpc) objects
- CTA will see whole Galaxy

- Field of view + sens.
- Survey speed ~300×HESS

Current Galactic VHE sources distance estimates

Current instruments

5°

ENERGY COVERAGE AND AREA

Energy threshold depends on collection area of a single telescope

 $N_{pe} = \rho_{ph} \times A \times R \times QE \times f$

At the highest energies, images will be visible at large distances

At lowest energies, few photons even in the core of the shower

BETTER ANGULAR RESOLUTION

BETTER ANGULAR RESOLUTION

Cen A (inner lobes)

SN 1006

TeV gamma rays

BETTER ANGULAR RESOLUTION

100 GeV

1000 *γ/h*·*km*²

tas.

4S + 4 N: 23 m Ø Large Size Telescopes (LST)

 $10 \gamma/h \cdot km^2$

Southern array of Cherenkov telescopes - about 3 km across

10 GeV

100 GeV

1000 y/h·km²

25 S + 15 N: 12 m Ø Medium Size Telescopes (MST)

10 y/h·km²

 $0.1 \gamma/h \cdot km^2$

Southern array of Cherenkov telescopes - about 3 km across

12004

....

1000 y/h·km²

70 S: 4 m Ø Small Size Telescopes (SST)

(in

10 TeV

100 TeV

0.1 y/h·km²

Southern array of Cherenkov telescopes - about 3 km across

CTA Sensitivity

Cta chereiikov telescope array

> Science with the Cherenkov Telescope Array

https://arxiv.org/abs/1709.07997

Monitoring 4 telescopes

TeV survey using MSTs

- proposals, identical tools

CTA SCHEDULING

GeV observations using LSTs

Large zenith angle observations from other hemisphere

Monitoring 1 telescope

CTA North and South through single portal, common calls for

Queue mode scheduler taking into account actual sky conditions, sub-arrays & conditions requested in proposal, priorities, TOOs

Science Themes & Key Science Projects

Theme		Question	Dark Matter Programme	Galactic Centre Survey	Galactic Plane Survey	LMC Survey	Extra- galactic Survey	Transients	Cosmic Ray PeVatrons	Star-forming Systems	Active Galactic Nuclei	Galaxy Clusters
Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the universe?		~	~~	~~	~~	~~	~	~	~	~~
	1.2	What are the mechanisms for cosmic particle acceleration?		~	~	~		~~	~~	~	~~	~
	1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		~		~				~~	~	~
Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?		~	~	~			~~		~~	
	2.2	What are the characteristics of relativistic jets, winds and explosions?		~	~	~	~	~~	~~		~~	
	2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					~	~			~~	
3 Exploring Frontiers in Physics 3 3	3.1	What is the nature of Dark Matter? How is it distributed?	~~	~~		~						~
	3.2	Are there quantum gravitational effects on photon propagation?						~~	~		~~	
	3.3	Do Axion-like particles exist?					~	~			~~	
IVERSITÉ GENÈVE			- Gamma-ray Astronomy – D. della Volpe				·	Key Objects				

Survey

CTA North La Palma, Spain

CTA South ESO, Chile

CTA North La Palma, Spain

CTA South ESO, Chile

LHAASO 高海拔宇宙线观测站

Large High Altitude Air Shower Observ

multi-component air shower detector for γ-ray astronomy in the energy range ~2×10¹¹-1 cosmic ray studies at energies ~10¹²-10¹⁸ eV.

Daochen, 4410 m a.s.l., 600 g/cm2 (29o21' 31" N, 100o08'15" E)

Gamma/Hadron separation

 Shower shape can be used to separate gamma/from hadron (Low energy)

• But more powerful is the measurement of the *Electron* and *Muon* content (High energy)

WCDA - Water Cherenkov Detector Array

 Measuring shower direction and location

- Measuring shower direction and location
- Measuring µ–content with the largest MD array ever
- Clean γ selection
- WFCTA Wide Fielf-of-view Cherenkov array
 - Extend energy range •
 - Measure Shower fluorescent light
 - Particle discrimination for composition study at knee

WCDA - Water Cherenkov Detector Array

study at knee

Gamma-ray Astronomy — D. della Volpe

Water Cherenkov Detector Array

300 m, 60 cells

Water Cherenkov Detector Array

 $5\,\mathrm{m} imes2$

Water Cherenkov Detector Array

 $5\,\mathrm{m} imes2$

WCDA - Water Cherenkov Detector Array

 Measuring shower direction and location

- Measuring shower direction and location
- Measuring µ–content with the largest MD array ever
- Clean γ selection
- WFCTA Wide Fielf-of-view Cherenkov array
 - Extend energy range •
 - Measure Shower fluorescent light
 - Particle discrimination for composition study at knee

WCDA - Water Cherenkov Detector Array

 Measuring shower direction and location

- Measuring shower direction and location
- Measuring µ–content with the largest MD array ever
- Clean γ selection
- WFCTA Wide Fielf-of-view Cherenkov array
 - Extend energy range •
 - Measure Shower fluorescent light
 - Particle discrimination for composition study at knee

WCDA - Water Cherenkov Detector Array

 Measuring shower direction and location

- Measuring shower direction and location
- Measuring μ -content with the largest MD array ever
- Clean γ selection
- WFCTA Wide Fielf-of-view Cherenkov array
 - Extend energy range •
 - Measure Shower fluorescent light
 - Particle discrimination for composition study at knee

CDA - Water Cherenkov Detector Array

Measuring shower direction and location

12A - Km-square array

Measuring shower direction and location Measuring µ–content with the largest MD array ever

Clean y selection

/CDA

- WFCTA Wide Fielf-of-view Cherenkov array
 - Extend energy range •
 - Measure Shower fluorescent light

 Particle discrimination for composition study at knee

LHAASO Sensitivity

Integral

Differential

Hadronic vs Leptonic

IC443 10-10 leptonic model 10-11 hadronic model Fermi-LAT VERITAS MAGIC 10⁻¹⁵ LHAASO leptonic model 5yr LHAASO hadronic model 5yr 10-16 ⊾ ______ ______ _____ _1_111111 10³ E(TeV)

10.1126/science.1231160

M. Ackermann et al. Science 2013;339:807-811 Sci

Copyright © 2013, American Association for the Advancement of Science

Wide FOV γ -ray Astronomy

1/7 of the sky at any moment

60% in the sky per day day (24h)

Extended Source sensitivity

Gamma-ray Astronomy — D. della Volpe

Extended Source sensitivity

Cygnus Cocoon

FACULTÉ DES SCIENCES

EAS Arrays & IACT complementary => synergy

- Important to establish Synergies to make real progress in understanding the non Thermal Universe
- Northern hemisphere
 - LHAASO and CTA North could exploit such synergy, almost same latitude sam sky coverage
 - Easy to share alerts and Surveys
 - But Key Science project are different, different allocation of observation time
 - A new Asian IACT Array near LHAASO to work in coordination?
 - Have a common Key science program, have a common scheduler?
 - How should it look like?
- Southern Hemisphere
 - CTA is under construction and a new EAS Array (SGSO) is being studied.

