The role of precision at the high-energy frontier

Gordon Research Conference "Particle Physics" Hong Kong University of Science and Technology June 30 - July 4, 2019

Eric Laenen

Outline

- Precision, accuracy, errors and uncertainty...
- ... for physics at the (HL-)LHC
- …for physics at future future colliders
- Some prospects for new methods and tools towards yet further precision

Recommended: inputs to and talks at Granada Open Symposium Apologies: credits in talk will be vastly inadequate

Theoretical colliders

- Hadron collider
 - transformed into "parton collider" via parton distribution functions

 $\mathrm{d}\sigma_{\mathrm{H}_{1}\mathrm{H}_{2}}(\{X_{n}\}) = \sum_{i,j} \int_{\xi_{1,\min}}^{1} \mathrm{d}\xi_{1} \int_{\xi_{2,\min}}^{1} \mathrm{d}\xi_{2} f_{i/\mathrm{H}_{1}}(\xi_{1}) f_{j/\mathrm{H}_{2}}(\xi_{2}) \,\mathrm{d}\hat{\sigma}_{ij}(\xi_{1},\xi_{2},\{X_{n}\}),$

- compute partonic cross section in perturbation theory
- infer (i.e. download) pdf
- Lepton collider: can do (partly) without pdf's

Collider physics

Optimize precision of inputs

A lot of LHC data still to come

At present we only have about 190/3000 ~ 6.5 % of data yield after HL-LHC

Precision, accuracy, error and uncertainty

A bit of terminology: for predictions for observable O

$$O^{[m]} = \sum_{n}^{m} c_n \alpha^n + \delta O^{[m]}$$

- <u>Precision</u>: compute to order "m", large enough for uncertainty $\delta O^{[m]}$ to be small enough
- But beware: it can a be small uncertainty on an incorrect result. It is then precise, but not accurate
- Errors: a measure of accuracy
 - experimental: statistical and systematical
- Uncertainty: indicates range in which true value could lie
- Confront prediction with measurement, all the more meaningful with small $\delta O^{[m]}$
- This is what we should be doing: a highly sophisticated instance of The Scientific Method

Example of precision vs accuracy

CDF Run 1 rapidity distribution of Z boson vs perturbation theory

Anastasiou, Dixon, Melnikov, Petriello '03

Purpose of precision: To Measure and Explore

- Aside from exceptional moments in the development of the field, research is not about proving a theory is right or wrong, it's about finding out how things work
- We do not measure Higgs couplings precisely to **find** deviations from the SM.We measure them to **know** them!

Michelangelo Mangano at SM@LHC '19, Zurich

Precision for SM and BSM

- Falsification
 - Compute promising SM observables to high precision for easier falsification by data

- Verification
 - Compute BSM influenced on selected observables to high precision
 - to ensure that the unique signatures are robust on HO corrections
 - to extract information (measurement or exclusion)

Precision for (HL-)LHC

So far excellent predictivity of SM at LHC

11

A core process at (HL-)LHC: Drell-Yan

- Sub percent level experimental error for Drell-Yan p_T spectrum, and other distributions
- Impact on W-mass, PDF-fits etc

Lorenzo Bianchini SM@LHC '19

Drell-Yan @ (HL-)LHC

- Theory challenged!
- NNLO + N3LL better than NNLO alone
 - NLO + resummation not sufficient
- At this level many small effects must be assessed
 - N3LO + N4LL?
 - PDF uncertainties at 1%?
 - non-perturbative effects at small pT
 - QED corrections (1-2%)
 - α_s uncertainty
- HL-LHC data will be much more challenging

Bizon, Chen, Gehrmann-de Ridder, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrieli '18

Top quark pairs at (HL)-LHC

We are already well into precision top quark physics era

- * all-QCD process, NNLO corrections for cross sections.. Czakon, Fiedler, Mitov '13
- ...and for differential distributions
 Czakon, Heymes, Mitov '15,'16
- good enough now to be input for PDF fits

Precision for top quark pair production

Value of higher orders for precision, and uncertainty budget

SolutionConcurrent uncertainties:Scales $\sim 3\%$ pdf (at 68%cl) $\sim 2-3\%$ $\alpha_{\rm S}$ (parametric) $\sim 1.5\%$ $m_{\rm top}$ (parametric) $\sim 3\%$ Soft gluon resummation makes a
difference:5%5% $\rightarrow 3\%$

Czakon, Fiedler, Mitov '13

- improvement due to higher orders and resummation clear
- all at the few percent level
- NLO EW also known

Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro '17

impact of photon-in-proton distribution notable

Theory for top pairs plus more

Status of precision theory description in 3D

Markus Schulze at LHCP '18

- Again, smaller effects come to the fore when precision is high
 - narrow width approximation vs. full off-shell decay, all this at higher order
 - m_{top} definition and value a guaranteed topic for lively debates
- Also here the experimental accuracies will be challenging theory

Higgs production at (HL-)LHC

Status of Higgs production mechanisms vs theory: theory (just) ahead for now

Includes N3LO calculation: 7 Million 3-loop Feynman diagrams 2 months of running on 25K cores

Anastasiou, Duhr, Dulat, Herzog, Mistlberger '15

Calculation was done in "1-z" = soft expansion

$$\hat{\sigma}_{ij}^{(3,N)} = \delta_{ig} \,\delta_{jg} \,\hat{\sigma}_{SV}^{(3)} + \sum_{n=0}^{N} c_{ij}^{(n)} \,(1-z)^n$$

- ▶ to N=37..
- full analytic result also available

Mistlberger '18

J. de Blas et al, arXiv: 1905.03764 Higgs boson studies at future colliders

- In general, Higgs uncertainties at HL-LHC = 1/2 those of LHC
- FCC: well below 1%

F. Caola @ Granada

n, need all to

		7-7			e	ana	m	otm	0.11	noor	ntaintice	
		-		igg:	s. p	ara	110	em	c u	ncer	rainites	
Deca	Decay	Partial width		current u	nc. ΔΓ/Γ [%	b]		future u	nc. ΔΓ/Γ [%]		
		[keV]	ThIntr	$\mathrm{Th}_{\mathrm{Par}}(m_q)$	$\operatorname{Th}_{\operatorname{Par}}(\alpha_s)$	$\mathrm{Th}_{\mathrm{Par}}(m_{\mathrm{H}})$	ThIntr	$\mathrm{Th}_{\mathrm{Par}}(m_q)$	$\mathrm{Th}_{\mathrm{Par}}(\alpha_s)$	$\mathrm{Th}_{\mathrm{Par}}(m_{\mathrm{H}})$		
$H \rightarrow$	$H \rightarrow b\bar{b}$	2379	< 0.4	1.4	0.4	-	0.2	0.6	< 0.1	-	$\delta \alpha_s = 0.0002$	<= very hard but doable at M ₂
H ightarrow au	$H \rightarrow \tau^+ \tau^-$	256	< 0.3	-	-	-	< 0.1	-	-	-	$\delta m_{t} = 50 MeV$	<= OK at e ⁺ e ⁻ threshold scan
$H \rightarrow$	$H \rightarrow c \overline{c}$	118	< 0.4	4.0	0.4	-	0.2	1.0	< 0.1	-	\$ 40 M IZ	
$H ightarrow\mu$	$H \rightarrow \mu^+ \mu^-$	0.89	< 0.3	-	-	-	< 0.1	-	-	-	$Om_b = 13 MeV$	<= 0K
$H \rightarrow W$	$H \rightarrow W^+W^-$	883	0.5	-	-	2.6	0.4	-	-	0.1	$\delta m_c = 7 MeV$	<= OK
$H \rightarrow$	$H \rightarrow gg$	335	3.2	< 0.2	3.7	-	1.0	-	0.5	-	$\delta m_{H} = 10 MeV$	
$H \rightarrow$	$H \rightarrow ZZ$	108	0.5	-	-	3.0	0.3	-	-	0.1	K IO DIO	son production cross
H ightarrow	$H ightarrow \gamma \gamma$	9.3	< 1.0	< 0.2	-	-	< 1.0	-	-	-]. Several sources of
$H \rightarrow $	$H \rightarrow Z \gamma$	6.3	5.0	-	-	2.1	1.0	-	-	0.1	see S. Dittmaier's talk	

 ggF cross section: many sources of sm be beaten down

Status of QCD corrections for LHC

- The theory community has responded to the precision challenge very impressively in the last 20 years
- Started in 2005 with highly ambitious (at the time) Les Houches wishlist for NLO calculations. All done by 2011
- This lead to NLO revolution
- New frontier: NNLO and even N3LO
 - many new methods have been developed: healthy marketplace
- Resummation, parton showers
 - much progress here in each (higher precision), and their combination
- Also much improved:
 - PDFs, heavy quark masses, computing methods

The NLO "revolution"

- Clever new methods have led to a breakthrough in NLO calculations. Particular the calculation of the oneloop diagrams has been "solved" in full generality, and has been automatized.
 - Results now in codes such as aMC@NLO, Powheg Box, MCFM,...
- + Basic notion: all one-loop amplitudes can written as a sum of boxes, triangle, bubbles and tadpoles

$$= \Sigma_i a_i + \Sigma_i b_i + \Sigma_i c_i - + \Sigma_i d_i - 0$$

 In essence because we live in 4 dimensions: every vector can be decomposed in at maximum four independent vectors
 Vermaseren, van Neerven; Bern, Dixon, Kosower,...

$$\mathcal{M} = \sum_{i} a_{i}(D) \operatorname{Boxes}_{i} + \sum_{i} b_{i}(D) \operatorname{Triangles}_{i} + \sum_{i} c_{i}(D) \operatorname{Bubbles}_{i} + \sum_{i} d_{i}(D) \operatorname{Tadpoles}_{i}$$

- Job: find coefficients
 - can use (generalized) unitarity: determined them from cuts and poles

Status of higher order calculations in QCD

- LO well-understood, now more efficient than ever
- NLO: automatized, a flood of results
- NNLO: top quark production (single and pair), dijet production, 1-jet inclusive,
- ► NNNLO: Higgs production, F₂(x,Q),

Automatic higher order calculations

- QCD NLO is automatized
 - no limitations in principle, but high multiplicity means longer running
 - including matching to parton showers: aMC@NLO in MadGraph5 framework

Allwal, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Torrieli, Zaro '14 approaching 4000 citations..

Frederix, Frixione, Hirschi, Maltoni, Pagani, Shao, Zaro '18

- NLO EW now also included
- POWHEG Box for NLO + PS

Nason, Oleari; + Frxione, Aioli, Re '04 ff

- general framework for NLO + PS
- HELAC-NLO

Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Malamos Papadopoulos, Pitta, Worek, Shao '14

Codes increasingly incorportated into exp'tl frameworks

High Energy Physics

Generate processes online using MadGraph5_aMC@NLO

To improve our web services we request that you register. Registentien is quick and live. You may register for a password by closing <u>here</u>. Presentation the connect reference for NadGraphS_aMCONLO, arXiv:1465.6301 [hep-ph].

Cocis zan be gamarated eithe	r by tonly LO process can	be gamerated online's
------------------------------	---------------------------	-----------------------

flodel:	54 🔛	Model description
apart Process		Examples/format
	Example: p p = we j j QED=3, we wie vi	
and (definition	ane: e-i-dus cd-s-s-c-s 🔁	
	the second se	

NNLO QCD and NLO EW Les Houches Wishlist

Wishlist part 1 - Higgs (V=W,Z)

Process	known	desired	motivation
н	d\sigma @ NNLO QCD d\sigma @ NLO EW finite quark mass effects @ NLO	d\sigma @ NNNLO QCD + NLO EW MC@NNLO finite quark mass effects @ NNLO	H branching ratios and couplings
H+j	d\sigma @ NNLO QCD (g only) d\sigma @ NLO EW	d\sigma @ NNLO QCD + NLO EW finite quark mass effects @ NLO	H p_T
H+2j	\sigma_tot(VBF) @ NNLO(DIS) QCD d\sigma(gg) @ NLO QCD d\sigma(VBF) @ NLO EW	d\sigma @ NNLO QCD + NLO EW	H couplings
H+V	d\sigma(V decays) @ NNLO QCD d\sigma @ NLO EW	with H→bb @ same accuracy	H couplings
t∖bar tH	d\sigma(stable tops) @ NLO QCD	d\sigma(NWA top decays) @ NLO QCD + NLO EW	top Yukawa coupling
нн	d\sigma @ LO QCD finite quark mass effects d\sigma @ NLO QCD large m_t limit	d\sigma @ NLO QCD finite quark mass effects d\sigma @ NNLO QCD	Higgs self coupling

Wishlist part 2 - jets and heavy quarks

Process	known	desired	motivation
t∖bar t	\sigma_tot @ NNLO QCD d\sigma(top decays) @ NLO QCD d\sigma(stable tops) @ NLO EW	d\sigma(top decays) @ NNLO QCD + NLO EW	precision top/QCD, gluon PDF effect of extra radiation at high rapidity top asymmetries

Precision for BSM

- Top down BSM
 - assume new physics model, or a simplified version, compute signals including (QCD) corrections
 - much work here has been done for MSSM, compositie models etc
 - Example: NLO + NNLL resummed for squark-gluino production
 - includes threshold and Coulomb corrections
 - improves limit-setting for gluino masses etc.

Beenakker, Borchesnky, Kraemer, Kulesza, EL '16

Beneke, Piclum, Schwinn, Wever, '16

be agnostic about new physics, parametrize it as effective theory

Precision for other future colliders

Precision of α_s

Top mass exp't error: 25 MeV expected Theory one larger at present.

Electroweak corrections

- QED corrections are also becoming quite important at the LHC
 - NNLO in QCD = NLO in EW
 - Photons in protons: LUXqed formalism
 - \checkmark Extract from precise ep data \rightarrow large increase in precision! (% level)

 $L^{\mu\nu}W_{\mu\nu}$ (DIS) = $\hat{\sigma}_{e\gamma} \otimes f_{\gamma/p}$ (γ PDF)

- EW loop corrections: many scales
 - particular relevant for EW precision observables
 - At large p⊤ in hadron colliders

High precision at lepton collider: Higgs couplings

Improvements w.r.t. HL-LHC

Some prospects for more precision

News from PDFs: theory errors

NNPDF collab.'19

- PDF errors dominant for many LHC predictions. Thus far they only reflect the uncertainties of measurements and their correlations
- First step in including uncertainties from Missing Higher Orders, by fitting PDF's for a set of
 µ_R, µ_F values, and from there sum the exp.("C") and th. ("S") covariance matrix
 Matrix<

32

$$\chi^2 = \sum_{i,j=1}^{N_{\text{dat}}} \left(D_i - T_i^{(0)} \right) \left(S + C \right)_{ij}^{-1} \left(D_j - T_j^{(0)} \right)$$

Introduces much more correlations between experimental inputs

News from PDFs: theory errors

- Validation: see at NLO if the NNLO central value is in the MHO uncertainty band
- Looks ok:

QCD precision at REALLY high order I

- five-loop QCD beta function
 - first done for SU(3), then for SU(N)
 - using R* method to extract divergences
 - 6 days on 32 core machine
 - five loop expansion in MSbar scheme very benign

 $\widetilde{\beta}(\alpha_{\rm s}, n_f = 4) = 1 + 0.490197 \,\alpha_{\rm s} + 0.308790 \,\alpha_{\rm s}^2 + 0.485901 \,\alpha_{\rm s}^3 + 0.280601 \,\alpha_{\rm s}^4 + \dots$

✓ less than 1% change due to 5-loop term, even at α_s =0.47

implications for running coupling:

Baikov, Chetyrkin, Kühn '16

Herzog, Ruijl, Ueda, Vermaseren, Vogt '17,

QCD precision at REALLY high order II

QCD splitting functions at four and five loops

$$\frac{\partial}{\partial \ln \mu^2} f_i(x,\mu^2) = \int_x^1 \frac{dy}{y} P_{ik}(y,\alpha_s(\mu^2)) f_k\left(\frac{x}{y},\mu^2\right) \qquad P = a_s P^{(0)} + a_s^2 P^{(1)} + a_s^3 P^{(2)} + a_s^4 P^{(3)} + \dots$$

 at three loops (NNLO) known analytically; at 4 loops in part numerically, at 5 loops some moments

Prospects for further QCD accuracy

- There is a "vibrant" community addressing NNLO for $2 \rightarrow 3$, N3LO and beyond
- Involves progress in
 - Ioop diagrams: analytical and numerical approaches
 - IR divergence management, new subtraction mechanisms, phase space slicing making a comeback
 - Shuffle/Hopf algebra of polylogs to 3rd order \rightarrow elliptic integrals
 - threshold expansions
 - automation, computing methods

Soft logarithms at next-to-leading power

• General soft expansion for $2 \rightarrow 1$ processes

$$\frac{d\sigma}{dz} = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} \left\{ c_{nm}^{(-1)} \left. \frac{\log^m (1-z)}{1-z} \right|_+ + c_{nm}^{(0)} \log^m (1-z) + \dots \right\}$$

- NLP logarithm organization
 - exhibit all-order patterns. Leading logarithmic resummation now achieved for a number of reactions
 Beneke Broggie Carmy Jackiewicz Verry

$$\hat{\sigma}_{\rm LO}^{(gg)}(Q^2) \exp\left\{\frac{2\alpha_s C_A}{\pi}\log^2(N)\right\} \left(1 + \frac{2\alpha_s C_F}{\pi}\frac{\log N}{N}\right)$$

Beneke, Broggio, Garny, Jaskiewicz, Vernazza, Szafron, Wang '18 Bahjat-Abbas, Bonocore, EL, Magnea, Sinninghe-Damsté, Vernazza, White '19 Moult, Stewart, Vita, Xhu '18

- technology also used to extend phase space slicing methods for NNLO calculations (using N-jettiness) to NLP
 - for much better numerical behavior

Elliptic progress: from math for loops

Polylogarithms appear after doing loop integrals

$$\operatorname{Li}_{1}(x) = -\log(1-x), \quad \operatorname{Li}_{n}(x) = \int_{0}^{x} \frac{dx'}{x'} \operatorname{Li}_{n-1}(x')$$

and more generally multiple polylogarithms (MPL's)

$$G(a_1, \dots, a_n; x) = \int_0^x \frac{dt}{t - a_1} G(a_2, \dots, a_n; t)$$

They obey a "shuffle algebra"

$$G(a_1,\ldots,a_k;x) G(a_{k+1},\ldots,a_{k+l};x) = \sum_{\sigma \in \Sigma(k,l)} G(a_{\sigma(1)},\ldots,a_{\sigma(k+l)};x)$$

- which can greatly simplify results. Its math properties help compute loop integrals
- At two loop and certainly beyond "elliptic" functions start appearing, including

$$K(\lambda) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-\lambda t^2)}}, \quad E(\lambda) = \int_0^1 dt \sqrt{\frac{1-\lambda t^2}{1-t^2}}$$

extensions of MPL technology to elliptic case are appearing

Broedel, Duhr, Dulat, Penante, Tancredi '19

Computing progress: analytical, numerical

- Computer algebra!
 - Many dedicated mathematica packages for categorizing loop diagrams (FIRE, REDUZE, ...)
 - Most powerful language, especially for high loops: FORM J. Vermaseren
 - still under active development. Recent: FORCER, code that writes other code
- Monte Carlo technology
 - improved parton showers, matching to fixed order

IMPORTANT:

As for other areas, for future progress we cannot take the **new talent** entering precision calculations for granted.

Support, including **recognition**, for creating/maintaining tools and technical innovations will be needed!

SMEFT and top physics

Brown, Buckley,Englert,Ferrando,Galler,Miller, More,Russell,White,Warrack

TopFitter

- Confront LHC and Tevatron top data with theory, including operators (14)
 - pair production (+ vector boson) and single top
- Experimental uncertainties as given
- Theoretical ones: vary scales, and use PDF uncertainties
- NLO effects via SM K-factors
- Top flavour-changing interactions, global analysis
 - Top pair and single top contributions
 - Include NLO for SM included
 - Include also running and mixing for operators
- Recent note on common standards in EFT approach by all involved

Aguilar-Saavedra et al arXiv:1802.07237

Dimension-6 operators for single top in t-channel

de Beurs, EL, Vreeswijk, Vryonidou '18

For single top production in the t-channel, only 3 operators matter!

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$
$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I$$
$$O_{qQ,rs}^{(3)} = \left(\bar{q}_r \gamma^{\mu} \tau^I q_s \right) \left(\bar{Q} \gamma_{\mu} \tau^I Q \right)$$

- Easier to get info on each operator separately
- Effects will be small, hence we should also include QCD corrections to SM
- They will affect the cross section, and differential distributions, in different ways
 - used MadGraph5_aMC@NLO

Effect on amplitudes and cross sections

- How do these operators modify single top scattering amplitudes and the cross section?
 - Amplitude

$$\mathcal{M} = \mathcal{M}_{\rm SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \mathcal{M}_i$$

Squared amplitude

$$|\mathcal{M}|^{2} = |\mathcal{M}|_{\mathrm{SM}}^{2} + \sum_{i} \frac{1\mathrm{TeV}^{2}}{\Lambda^{2}} C_{i} \, 2\mathrm{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \, \mathcal{M}_{i}\right) + \sum_{i \leq j} \frac{1\mathrm{TeV}^{4}}{\Lambda^{4}} C_{i} C_{j} \left|\mathcal{M}\right|_{i,j}^{2}$$

Cross sections

$$\sigma = \sigma_{\rm SM} + \sum_{i} \frac{1 \,{\rm TeV}^2}{\Lambda^2} C_i \,\sigma_i + \sum_{i \le j} \frac{1 \,{\rm TeV}^4}{\Lambda^4} C_i C_j \,\sigma_{i,j}$$

• NLO QCD needed in order to make C_i corrections stand out from $\sigma_{SM}(\mu, \alpha_s(\mu))$

SMEFT single top distributions at NLO

- Wbj production then W-decay via MadSpin, parton showering with Pythia8
- Top quark p_T and η normalized distributions
 - Four-fermion operator different shape. QCD corrections at large pT and central rapidity notable
 - Allow for new physics operators in production and decay (EFT=2)

Next steps in automation in MG5_aMC@NLO

- (Not yet NNLO...)
- SMEFT@NLO is fully included
 - but renormalization group running and mixing of all the operators still to be done
- MSSM@NLO is under construction. Two example plots [thanks to M. Zaro]
 - susy pair production at NLO; # jets in gluino pair production after decay and ps

Imprecise and somewhat uncertain outlook

- With only the first few percent of LHC data acquired, experiment will demand high theoretical precision
 - not just NLO or NNLO, small other effects come into play
- Theory community is meeting the challenge, with quite spectacular progress in the last 15 years

S. Dittmaier @ Granada

Can theory provide the necessary precision?

 \hookrightarrow Optimists: "Yes. No show-stoppers seen, great progress can be anticipated."

Sceptics: "Enormous challenge! Conceptual progress difficult to extrapolate."

- New ideas, methods and talent give reason for optimism
 - with sufficient support, recognition and resources