
Eric Laenen

The role of precision  
at the high-energy frontier 

Gordon Research Conference
“Particle Physics”
Hong Kong University of Science 
and Technology
June 30 - July 4, 2019



Outline
✦ Precision, accuracy, errors and uncertainty… 
✦ …for physics at the (HL-)LHC 
✦ …for physics at future future colliders 
✦ Some prospects for new methods and tools towards yet further precision
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Apologies: credits in talk will be vastly inadequate

Recommended: inputs to and talks at Granada Open Symposium



Theoretical colliders
✦ Hadron collider 
‣ transformed into “parton collider” via parton distribution functions 

‣ compute partonic cross section in perturbation theory 
‣ infer (i.e. download) pdf 

✦ Lepton collider: can do (partly) without pdf’s
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Collider physics
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diagrams

NkLO, EW, MC, etc

PDF’s

αs, αW..

masses

CKM

Distributions

Events

Cross sections

Input quantities Output

Goal: highly precise output
➨ Optimize precision of inputs



A lot of LHC data still to come
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14/12/2018 M. Schaumann, 191st CERN Council Open Session 12

Run1 + Run 2 Luminosity Production

Period Int. Luminosity
[fb-1]

Run 1 29.2

Run 2: 2015 4.2

Run 2: 2016 39.7

Run 2: 2017 50.2

Run 2: 2018 66

Total Run 1+ 2 189
31.10.2018

160fb-129fb-1

Source: https://twiki.cern.ch/twiki/bin/viewauth/LhcMachine/LhcCoordinationMain

• Every year beats the record 
of the last!

• Integrated luminosity Run 2: 
160fb-1

• LHC total integrated proton-
proton luminosity: 189fb-1

At present we only have about 190/3000 ∿ 6.5 % of data yield after HL-LHC



Precision, accuracy, error and uncertainty
✦ A bit of terminology: for predictions for observable O 

‣ Precision: compute to order “m”, large enough for uncertainty  !   to be small enough 
‣ But beware: it can a be small uncertainty on an incorrect result. It is then precise, but not 

accurate 
‣ Errors: a measure of accuracy 

✓ experimental: statistical and systematical 

‣ Uncertainty: indicates range in which true value could lie 
✦ Confront prediction with measurement, all the more meaningful with small !  
✦ This is what we should be doing: a highly sophisticated instance of The Scientific 

Method
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Example of precision vs accuracy
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Figure 1
Rapidity distribution of Z bosons at the Tevatron versus leading-order (LO), next-to-leading-order (NLO),
and next-to-next-to-leading order (NNLO) quantum chromodynamics predictions. Taken from Reference 2.

large qT , the recoil is dominated by one hard parton emission, and further emissions are suppressed
by a power of the strong coupling constant αs. At small qT , however, the recoil is dominated by
multiple soft gluon emissions, and the suppression from extra powers of αs is compensated by
concomitant powers of numerically large logarithms of the form ln(MV/qT), where MV = MW,Z

denotes the mass of the weak gauge boson. Because of the systematics inherent in the subclass of
large logarithmic terms, the latter can be summed to all orders and can thereby provide a good
description of the data at small qT (see below). Describing the qT distribution well is important both
for understanding the underlying QCD dynamics and for obtaining a precise W mass measurement
at the Tevatron or the LHC.

Recently, a number of e+e− event shapes have been determined at next-to-next-to-leading-
order (NNLO) QCD (4), a very impressive feat. Among the first applications of this calculation
was the extraction of αs from such observables, whose accuracy was until then limited by theory.
The result indeed provides a considerably reduced scale uncertainty, markedly better consistency
among the results from different event shapes, and a lower central value of αs in better agreement
with the world average (Figure 2).

For the EW case, precision physics at e+e− colliders (e.g., CERN’s LEP and SLAC’s SLC)
and at the Tevatron has yielded tests of the SM at an unprecedented level of precision, providing
constraints on the SM Higgs boson mass (MH ) and excluding various models for physics beyond
the SM (BSM). To push the boundary of EW precision physics even further, so as to possibly reveal
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Purpose of precision: To Measure and Explore
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• Aside from exceptional moments in the development of the field, research is 
not about proving a theory is right or wrong, it’s about finding out how 
things work

• We do not measure Higgs couplings precisely to find deviations from the 
SM. We measure them to know them!

• LEP’s success was establishing SM’s amazing predictive power!Michelangelo Mangano at SM@LHC ’19, Zurich



Precision for SM and BSM
✦ Falsification 
‣ Compute promising SM observables to high precision for easier falsification by data 

✦ Verification 
‣ Compute BSM influenced on selected observables to high precision 

✓ to ensure that the unique signatures are robust on HO corrections 
✓ to extract information (measurement or exclusion) 

!9

R
L dt
[fb�1] Reference

– ZZ⇤!4` � = 29.8 + 3.8 � 3.5 + 2.1 � 1.9 fb (data)
PowhegBox & gg2ZZ (theory) 4.6 JHEP 03, 128 (2013)

� = 73 ± 4 ± 5 fb (data)
PowhegBox norm. to NNLO & gg2ZZ (theory) 20.3 PLB 753, 552-572 (2016)

– ZZ!``⌫⌫ � = 12.7 + 3.1 � 2.9 ± 1.8 fb (data)
PowhegBox & gg2ZZ (theory) 4.6 JHEP 03, 128 (2013)

� = 9.7 + 1.5 � 1.4 + 1 � 0.8 fb (data)
PowhegBox & gg2ZZ (theory) 20.3 JHEP 01, 099 (2017)

– ZZ!4`
� = 25.4 + 3.3 � 3 + 1.6 � 1.4 fb (data)

PowhegBox & gg2ZZ (theory) 4.6 JHEP 03, 128 (2013)

� = 23.2 + 2.4 � 2.3 + 1.4 � 1.2 fb (data)
PowhegBox & gg2ZZ (theory) 20.3 JHEP 01, 099 (2017)

� = 46.4 ± 1.5 + 1.8 � 1.7 fb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 ATLAS-CONF-2017-031

ZZ
� = 6.7 ± 0.7 + 0.5 � 0.4 pb (data)

NNLO (theory) 4.6 JHEP 03, 128 (2013)
PLB 735 (2014) 311

� = 7.3 ± 0.4 + 0.4 � 0.3 pb (data)
NNLO (theory) 20.3 JHEP 01, 099 (2017)

� = 17.2 ± 0.6 ± 0.7 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 ATLAS-CONF-2017-031

PLB 735 (2014) 311

– WZ!`⌫`` � = 140.4 ± 3.8 ± 4.6 fb (data)
MCFM NLO (theory) 20.3 PRD 93, 092004 (2016)

� = 252.8 ± 13.2 ± 12 fb (data)
MATRIX (NNLO) (theory) 3.2 PLB 762 (2016) 1

WZ
� = 19 + 1.4 � 1.3 ± 1 pb (data)

MATRIX (NNLO) (theory) 4.6 EPJC 72, 2173 (2012)
PLB 761 (2016) 179

� = 24.3 ± 0.6 ± 0.9 pb (data)
MATRIX (NNLO) (theory) 20.3 PRD 93, 092004 (2016)

PLB 761 (2016) 179

� = 50.6 ± 2.6 ± 2.5 pb (data)
MATRIX (NNLO) (theory) 3.2 PLB 762 (2016) 1

PLB 761 (2016) 179

– WW!eµ, [njet = 1] � = 136 ± 6 ± 14.3 fb (data)
NLO (theory) 20.3 PLB 763, 114 (2016)

– WW!eµ, [njet � 0] � = 563 ± 28 + 79 � 85 fb (data)
MCFM (theory) 4.6 PRD 91, 052005 (2015)

– WW!eµ, [njet = 0]
� = 262.3 ± 12.3 ± 23.1 fb (data)

MCFM (theory) 4.6 PRD 87, 112001 (2013)

� = 374 ± 7 + 26 � 24 fb (data)
approx. NNLO (theory) 20.3 JHEP 09 (2016) 029

� = 529 ± 20 ± 52 fb (data)
NNLO (theory) 3.2 arXiv: 1702.04519 [hep-ex]

WW
� = 51.9 ± 2 ± 4.4 pb (data)

NNLO (theory) 4.6 PRD 87, 112001 (2013)
PRL 113, 212001 (2014)

� = 68.2 ± 1.2 ± 4.6 pb (data)
NNLO (theory) 20.3 PLB 763, 114 (2016)

� = 142 ± 5 ± 13 pb (data)
NNLO (theory) 3.2 arXiv: 1702.04519 [hep-ex]

– WV!`⌫J � = 30 ± 11 ± 22 fb (data)
MC@NLO (theory) 20.2 arXiv: 1706.01702 [hep-ex]

WV!`⌫jj � = 1.37 ± 0.14 ± 0.37 pb (data)
MC@NLO (theory) 4.6 JHEP 01, 049 (2015)

� = 209 ± 28 ± 45 fb (data)
MC@NLO (theory) 20.2 arXiv: 1706.01702 [hep-ex]

– Z�!⌫⌫� � = 0.133 ± 0.013 ± 0.021 pb (data)
MCFM NLO (theory) 4.6 PRD 87, 112003 (2013)

� = 68 ± 4 + 33 � 32 fb (data)
NNLO (theory) 20.3 PRD 93, 112002 (2016)

– [njet = 0] � = 1.05 ± 0.02 ± 0.11 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

� = 1.189 ± 0.009 + 0.073 � 0.067 pb (data)
NNLO (theory) 20.3 PRD 93, 112002 (2016)

Z�!``� � = 1.31 ± 0.02 ± 0.12 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

arXiv:1407.1618 [hep-ph]

� = 1.507 ± 0.01 + 0.083 � 0.078 pb (data)
NNLO (theory) 20.3 PRD 93, 112002 (2016)

arXiv:1407.1618 [hep-ph]

– [njet = 0] � = 1.76 ± 0.03 ± 0.22 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

W�!`⌫� � = 2.77 ± 0.03 ± 0.36 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

arXiv:1407.1618 [hep-ph]

��
� = 44 + 3.2 � 4.2 pb (data)

2�NNLO (theory) 4.9 JHEP 01, 086 (2013)

� = 16.82 ± 0.07 + 0.75 � 0.78 pb (data)
2�NNLO + CT10 (theory) 20.2 PRD 95 (2017) 112005

ratio to best theory
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Figure 1: Current status of data/theory comparison for diboson cross sections.

would now start to dominate in a number of comparisons between Higgs production mea-
surements and SM expectations and in the corresponding extraction of Higgs boson prop-
erties, as illustrated in Figure 2.

5. Resummation: Our ability to compute all-order logarithmic terms in physical cross sec-
tions, either using standard coherent branching methods or using soft-collinear e↵ective
theory (SCET), has advanced significantly. As a result we have next-to-next-to-leading
logarithmic (NNLL) accurate predictions for a wide range of multi-scale processes. One
example is in Higgs production, where the combination of NNLL and NNLO results has
made it possible to have confidence in the ability to extract quantitatively reliable informa-
tion from Higgs studies even in the presence of jet vetoes that help remove backgrounds.
Another example is N3LL predictions for the Higgs and DY transverse momentum distri-
butions, the former being of interest because it is sensitive to the coupling of the Higgs
to relatively light quarks, the latter being of particular relevance for example for precise
hadron-collider W -mass extractions.

The theoretical developments in resummation have equally contributed to the formulation
of e�cient methods to handle and cancel infrared singularities at NNLO and beyond.

6. Parton distribution functions: The recent progress on NNLO corrections for 2 ! 2
processes has had an immediate e↵ect on the determination of parton distributions from
collider data. They enabled many more observables to be consistently included in fits at
this order, thereby sharpening our understanding of the parton structure of the proton.
However, several open issues remain. Specifically a full characterisation of the statistical
meaning of PDF uncertainties is still in the making, and the inclusion of theoretical uncer-
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Figure 1: Current status of data/theory comparison for diboson cross sections.

would now start to dominate in a number of comparisons between Higgs production mea-
surements and SM expectations and in the corresponding extraction of Higgs boson prop-
erties, as illustrated in Figure 2.

5. Resummation: Our ability to compute all-order logarithmic terms in physical cross sec-
tions, either using standard coherent branching methods or using soft-collinear e↵ective
theory (SCET), has advanced significantly. As a result we have next-to-next-to-leading
logarithmic (NNLL) accurate predictions for a wide range of multi-scale processes. One
example is in Higgs production, where the combination of NNLL and NNLO results has
made it possible to have confidence in the ability to extract quantitatively reliable informa-
tion from Higgs studies even in the presence of jet vetoes that help remove backgrounds.
Another example is N3LL predictions for the Higgs and DY transverse momentum distri-
butions, the former being of interest because it is sensitive to the coupling of the Higgs
to relatively light quarks, the latter being of particular relevance for example for precise
hadron-collider W -mass extractions.

The theoretical developments in resummation have equally contributed to the formulation
of e�cient methods to handle and cancel infrared singularities at NNLO and beyond.

6. Parton distribution functions: The recent progress on NNLO corrections for 2 ! 2
processes has had an immediate e↵ect on the determination of parton distributions from
collider data. They enabled many more observables to be consistently included in fits at
this order, thereby sharpening our understanding of the parton structure of the proton.
However, several open issues remain. Specifically a full characterisation of the statistical
meaning of PDF uncertainties is still in the making, and the inclusion of theoretical uncer-
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Precision for (HL-)LHC



So far excellent predictivity of SM at LHC
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9. Quantum chromodynamics 25

 [
p
b
]

σ
P

ro
d
u
ct

io
n
 C

ro
ss

 S
e
ct

io
n
, 
 

4−10

3−10

2−10

1−10

1

10

210

310

410

510

CMS PreliminaryAugust 2017

All results at: http://cern.ch/go/pNj7

W

n jet(s)≥

Z

n jet(s)≥

γW γZ WW WZ ZZ

µll, l=e,→, Zνl→EW: W
qqW
EW 

qqZ
EW

WW

→γγ

γqqW
EW

ssWW
 EW

γqqZ
EW

qqZZ
EW γWV γγZ γγW tt

=n jet(s)

t-cht tW s-cht γtt tZq ttW ttZ tttt

σ∆ in exp. Hσ∆Th. 

ggH
qqH
VBF VH ttH HH

CMS 95%CL limits at 7, 8 and 13 TeV

)-1 5.0 fb≤7 TeV CMS measurement (L 
)-1 19.6 fb≤8 TeV CMS measurement (L 
)-1 35.9 fb≤13 TeV CMS measurement (L 

Theory prediction
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LHC, for centre-of-mass energies of 7, 8 and 13 TeV. Also shown are the theoretical
predictions and their uncertainties.
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A core process at (HL-)LHC: Drell-Yan

✦ Sub percent level experimental error for Drell-Yan pT spectrum, and other 
distributions 

✦ Impact on W-mass, PDF-fits etc

!12

Introduction and motivation

• Studying lepton production in proton-proton collisions.•

• Relevant process involving the Electroweak interaction of the
Standard Model.

•

• Sensitive to SM parameters and proton PDFs!•
• Well understood bosons used as standard candles.•
• Important background for New Physics (and low cross-section SM

processes).
•

DY is a keystone in the LHC program

O. González (CIEMAT) SM@LHC-2019 (23-26/IV/2019)2

qVT measurements at LHC
Theory:

‣ σ-1dσV/dqT ~ 5%[1]

‣ dσW / dσZ  ~ 5%-10%[2], 0.5%-2.5%[3], 1-2%[2]  (depending on corr. scheme)

Experiment:

‣ σ-1dσZ/dqT ~  0.5-1%     with ~2 GeV bins

‣ σ-1dσW/dqT ~ 1.5-2.5%  with ~8 GeV bins

‣ dσW/ dσZ       ~ 2.5%        with ~8 GeV bins

[1] Bizon et al., JHEP 12 (2018) 132

[2] Rottoli, Isaacson, EW workshop, Durham

[3] ATLAS, EPJC 78 (2018) 110 
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Drell-Yan @ (HL-)LHC
✦ Theory challenged! 
✦ NNLO + N3LL better than NNLO alone 
‣ NLO + resummation not sufficient 

✦ At this level many small effects must be 
assessed 
‣ N3LO + N4LL? 
‣ PDF uncertainties at 1%? 
‣ non-perturbative effects at small pT 
‣ QED corrections (1-2%) 
‣ αs uncertainty 

✦ HL-LHC data will be much more challenging

!13

[Bizon, Chen, Gehrmann - De Ridder, Gehrmann, Glover, Huss, PM, Re, Rottoli, Torrielli ’18] 10
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‣ Data and fiducial cuts from [ATLAS 1512.02192] 

‣ ~7%-10% corrections w.r.t. NNLL+NLO 

‣ Scale uncertainties below the 5% level 

‣ Similar findings for the phi* angular observable  
[backup]

Bizon, Chen, Gehrmann-de Ridder, Gehrmann, 
Glover, Huss, Monni, Re, Rottoli, Torrieli ‘18



Top quark pairs at (HL)-LHC
✦ We are already well into precision top quark physics era 

✦ all-QCD process, NNLO corrections for cross sections.. 
✦ ..and for differential distributions 
✦ good enough now to be input for PDF fits

!14

Total and differential cross sections
• We are well in the hadron collider precision measurement territory !!!
• … for a few years now

LHC σ(tt) [pb] L [fb-1] Nevent

7 TeV 180 5 9 x 105

8 TeV 256 20 5 x 106

13 TeV 835 36 3 x 107
LHC Run 2

LHC Run 1

3

Czakon, Fiedler, Mitov ‘13

Czakon, Heymes, Mitov ’15,’16



Precision for top quark pair production
✦ Value of higher orders for precision, and uncertainty budget 

✦ improvement due to higher orders and resummation clear 
✦ all at the few percent level 
✦ NLO EW also known 
‣ impact of photon-in-proton distribution notable

!15

Czakon, Fiedler, Mitov ‘13

Perturbation theory convergence

Concurrent uncertainties:

Scales ~ 3%
pdf (at 68%cl) ~ 2-3%
αS (parametric) ~ 1.5%
mtop (parametric)   ~ 3%

Soft gluon resummation makes a 
difference:       5%  à 3%

MC, Fiedler, Mitov `13 6

Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro ‘17



Theory for top pairs plus more
✦ Status of precision theory description in 3D 

✦ Again, smaller effects come to the fore when precision is high 
‣ narrow width approximation vs. full off-shell decay, all this at higher order 
‣ mtop definition and value - a guaranteed topic for lively debates 

✦ Also here the experimental accuracies will be challenging theory 

!16

  

NNLO

  NLO

Resummation

stable tops

narrow width approx.

o�-shell e�ects (WWbb)

decays

legs

loops

✔ ✔ ✔

✔

✔

✔ ✔

✔✔

✔
(✔)
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Markus Schulze at LHCP ‘18



Higgs production at (HL-)LHC
✦ Status of Higgs production mechanisms vs theory: theory (just) ahead for now 

✦ Calculation was done in “1-z” = soft expansion 

‣ to N=37.. 
‣ full analytic result also available 

!17

theoσ/procσ
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Figure 2: Current status of data/theory comparison for Higgs production cross sections.

tainties is missing as yet. The validity of certain legacy datasets is controversial, thereby
highlighting the need of complementary information from more collider processes.

3 Roadmap for precision theory in the context of HL-LHC

The LHC experiments have reached a very high level of sophistication in the reconstruction of
collision events, thereby enabling to make precise measurements despite the complex environ-
ment including substantial pileup. As an example, measurements of Drell-Yan production have
reached half-percent precision (aside from an overall luminosity uncertainty) for a range of kine-
matic distributions. On this basis, and in the light of detailed projections from the experiments,
one can expect that substantial further progress will be needed in theoretical calculations if
these are not to become the limiting factor in interpreting a wide range of HL-LHC data. Again
there are several broad directions:

1. Core processes at high accuracy: The experimental precision for many core 2 ! 1
and 2 ! 2 processes is likely to approach 1% precision, over a substantial range of phase
space. Even where today’s measurements are already limited by systematics, for example
tt̄ cross section measurements, it is not unreasonable to expect (a) that experimental
systematics will come under better control and (b) that the field will devise analysis
techniques that eliminate certain classes of experimental systematic errors. Many current
NNLO predictions do not normally reach 1% precision and therefore there is a strong case
for seeking to achieve N3LO accuracy for a range of 2 ! 1 and 2 ! 2 processes, and also
in PDF evolution.

Theory-data comparisons of these simple processes will feed back into our knowledge of
PDFs, with a knock-on e↵ect across a whole range of LHC physics. They also have the
potential to increase sensitivity to small deviations from BSM e↵ects that cannot otherwise

4
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threshold expansion of each master integral. An impor-
tant part of our computation has been the evaluation of
the boundary conditions which are needed for solving the
di↵erential equations for the master integrals. Many of
the boundary conditions required in this project had al-
ready been derived in the context of the soft-virtual and
next-to-soft results [15–18, 20]. Using similar techniques,
we have computed the remaining few unknown boundary
conditions for master integrals which start to be relevant
only at a high order in the threshold expansion.

Having at our disposal the complete set of master
integrals as expansions around the threshold limit, we
can easily obtain the cross-sections at N3LO for all par-
tonic channels contributing to Higgs production via gluon
fusion. The partonic cross-sections are related to the
hadronic cross-section at the LHC through the integral

� =
X

i,j

Z
dx1dx2fi(x1, µf )fj(x2, µf )�̂ij(z, µr, µf ) , (1)

where the summation indices i, j run over the parton fla-
vors in the proton, fi are parton densities and �̂ij are

partonic cross-sections. Furthermore, we define z = m
2
H

s
,

where mH is the mass of the Higgs boson and
p
s is the

partonic center-of-mass energy, related to the hadronic
center-of-mass energy

p
S through s = x1 x2 S. The

renormalisation and factorisation scales are denoted by
µr and µf . We work in an e↵ective theory approach
where the top-quark is integrated out. The e↵ective La-
grangian describing the interaction of the Higgs boson
and the gluons is,

Le↵ = �C

4
H G

a

µ⌫
G

aµ⌫
, (2)

where H is the Higgs field, G
a

µ⌫
is the gluon field

strength tensor and C the Wilson coe�cient, known up
to N4LO [26]. We expand the partonic cross-sections
into a perturbative series in the strong coupling constant
evaluated at the scale µr,

�̂ij = �̂0

"
�ig �jg �(1� z) +

1X

`=1

✓
↵s(µr)

⇡

◆`

�̂
(`)
ij

#
. (3)

In this expression �̂0 denotes the leading order cross-
section, and the terms through NNLO in the above ex-
pansion have been computed in [23, 30, 31]. The main
result of this Letter is the result for the N3LO coe�-
cient, corresponding to ` = 3 in eq. (3), for all possible
parton flavours in the initial state. We cast the N3LO
coe�cients in the form

�̂
(3)
ij

= lim
N!1

�̂
(3,N)
ij

, (4)

where we introduce the truncated threshold expansions
defined by

�̂
(3,N)
ij

= �ig �jg �̂
(3)
SV +

NX

n=0

c
(n)
ij

(1� z)n . (5)

FIG. 1: The N3LO correction from the gg channel to the
hadronic cross-section as a function of the truncation order
N in the threshold expansion for the scale choice µ = mH .

Here, �̂(3)
SV denotes the soft-virtual cross-section at N3LO

of ref. [17–19] and N = 0 is the next-to-soft approxi-
mation of ref. [20]. Using our method for the threshold
expansion of the master integrals, we were able to deter-

mine the c(n)
ij

analytically up to at least n = 30. Note that
at any given order in the expansion these coe�cients are
polynomials in log(1� z). While this approach does not
cast the partonic cross-sections in a closed analytic form,
we argue that it yields the complete result for the value
of the hadronic cross-section. In Fig. 1 we show the con-
tribution of the partonic cross-section coe�cients N3LO
to the hadronic cross-section for a proton-proton collider
with 13TeV center-of-mass energy as a function of the
truncation order N . We use NNLO MSTW2008 [28] par-
ton densities and a value for the strong coupling at the
mass of the Z-boson of ↵s(mZ) = 0.117 as initial value
for the evolution, and we set the factorisation scale to
µf = mH . We observe that the threshold expansion sta-
bilises starting from N = 4, leaving a negligible trun-
cation uncertainty for the hadronic cross-section there-
after. We note, though, that we observe a very small,
but systematic, increase of the expansion in the range
N 2 [15, 37], as illustrated in Fig. 1. We have observed
that a similar behaviour is observed for the threshold
expansion at NNLO. The systematic increase originates
from values of the partonic cross-section at very small z.
Indeed, this increase appears only in the contributions
to the hadronic cross-section integral for values z < 0.1.
It is natural that the terms of the threshold expansion
computed here do not furnish a good approximation of
the hadronic integral in the small z region due to the di-
vergent high energy behaviour of the partonic cross sec-
tions [29]. However, it is observed that this region is
suppressed in the total hadronic integral and for z < 0.1
contributes less than 0.4% of the total N3LO correction.
The same region at NLO and NNLO, where analytic ex-

Mistlberger ‘18

Anastasiou, Duhr, Dulat, Herzog, Mistlberger ‘15



Higgs boson studies at future colliders
✦ In general, Higgs uncertainties at HL-LHC = 1/2 those of LHC 
✦ FCC: well below 1% 

✦ ggF cross section: many sources of small uncertainties in theory description, need all to 
be beaten down

!18

J. de Blas et al, arXiv: 1905.03764

Higgs: parametric uncertainties

Table 18. Partial decay widths for the Higgs boson to specific final states and the uncertainties in their calculation [84]. The
uncertainties arise either from intrinsic limitations in the theoretical calculation (ThIntr) and parametric uncertainties (ThPar).
The parametric uncertainties are due to the finite precision on the quark masses, ThPar(mq), on the strong coupling constant,
ThPar(as), and on the Higgs boson mass, ThPar(MH ). The columns labelled "partial width" and "current uncertainty" and refer
to the current precision [84], while the predictions for the future are taken from ref. [117]. For the future uncertainties, the
parametric uncertainties assume a precision of dmb = 13 MeV, dmc = 7 MeV, dmt = 50 MeV, das = 0.0002 and
dMH = 10 MeV.

Decay Partial width current unc. DG/G [%] future unc. DG/G [%]

[keV] ThIntr ThPar(mq) ThPar(as) ThPar(mH ) ThIntr ThPar(mq) ThPar(as) ThPar(mH )

H ! bb̄ 2379 < 0.4 1.4 0.4 � 0.2 0.6 < 0.1 �

H ! t+t� 256 < 0.3 � � � < 0.1 � � �

H ! cc̄ 118 < 0.4 4.0 0.4 � 0.2 1.0 < 0.1 �

H ! µ+µ� 0.89 < 0.3 � � � < 0.1 � � �

H !W+W� 883 0.5 � � 2.6 0.4 � � 0.1

H ! gg 335 3.2 < 0.2 3.7 � 1.0 � 0.5 �

H ! ZZ 108 0.5 � � 3.0 0.3 � � 0.1

H ! gg 9.3 < 1.0 < 0.2 � � < 1.0 � � �

H ! Zg 6.3 5.0 � � 2.1 1.0 � � 0.1

52/58

Sources of uncertainty for the inclusive Higgs boson production cross
section have been assessed recently in refs. [?, ?, ?, ?]. Several sources of
theoretical uncertainties were identified.
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Figure 1: The figure shows the linear sum of the di↵erent sources of rela-
tive uncertainties as a function of the collider energy. Each coloured band
represents the size of one particular source of uncertainty as described in
the text. The component �(PDF+↵S) corresponds to the uncertainties due
to our imprecise knowledge of the strong coupling constant and of parton
distribution functions combined in quadrature.

• Missing higher order e↵ects of QCD corrections beyond N3LO (�(scale)).

• Missing higher order e↵ects of electro-weak and mixed QCD-electro-
weak corrections at and beyond O(↵S↵) (�(EW)).

• E↵ects due to finite quark masses neglected in QCD corrections beyond
NLO (�(t,b,c) and �(1/mt)).

• Mismatch in the perturbative order of the parton distribution func-
tions evaluated at NNLO and the perturbative QCD cross sections
evaluated at N3LO (�(PDF-TH)).

In the tables the linear sum of the e↵ect of those uncertainties is referred to as
�(theory). In addition, the imprecise knowledge of the parton distribution
functions and of the strong coupling constant play a dominant role. The
individual size of these contributions can be seen in fig. 1 as a function of
the collider energy [?]. As can be easily inferred the relative importance
of the di↵erent sources of uncertainty is impacted only mildly by changing

3

 δαs = 0.0002 
δmt = 50 MeV 
δmb = 13 MeV 
δmc = 7 MeV 
δmH = 10 MeV 

see S. Dittmaier’s talk

HXSWG, extrapolation of 
current ggF uncertainties to 
high energy pp colliders

F. Caola @ Granada

Theoretical Uncertainties: partial widths
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Status of QCD corrections for LHC
✦ The theory community has responded to the precision challenge very impressively 

in the last 20 years 
✦ Started in 2005 with highly ambitious (at the time) Les Houches wishlist for NLO 

calculations. All done by 2011 
✦ This lead to NLO revolution 
✦ New frontier: NNLO and even N3LO 
‣ many new methods have been developed: healthy marketplace  

✦ Resummation, parton showers 
‣ much progress here in each (higher precision), and their combination 

✦ Also much improved: 
‣ PDFs, heavy quark masses, computing methods

!19



The NLO “revolution”
✦ Clever new methods have led to a breakthrough in NLO calculations. Particular the calculation of the one-

loop diagrams has been “solved” in full generality, and has been automatized.  
‣ Results now in codes such as aMC@NLO, Powheg Box, MCFM,… 

✦ Basic notion:  all one-loop amplitudes can written as a sum of boxes, triangle, bubbles and tadpoles 

✓ In essence because we live in 4 dimensions: every vector can be decomposed in at maximum four 
independent vectors 

✦ Job: find coefficients 
‣ can use (generalized) unitarity: determined them from cuts and poles

!20

Vermaseren, van Neerven; Bern, Dixon, Kosower,...

=
∑

i ai + +
∑

i ci

∑

i bi
∑

i di+

d⇤pp�X

d3p1 . . . d3pn
=

⇤

a,b

⌅
dx1dx2fa(x1 , µF )fb(x2 , µF )

� ⇤̂ab(pa + pb ⇥ pX , �s(µR), µR, µF ) +O
�

�2

Q2

⇥

M =
⇤

i

ai(D)Boxesi +
⇤

i

bi(D)Trianglesi +
⇤

i

ci(D)Bubblesi +
⇤

i

di(D)Tadpolesi

M =
⇤

i

ai(4)Boxesi +
⇤

i

bi(4)Trianglesi +
⇤

i

ci(4)Bubblesi +
⇤

i

di(4)Tadpolesi+Rational term

1

=
∑

i ai + +
∑

i ci

∑

i bi
∑

i di+

=

Pole



Status of higher order calculations in QCD

‣ LO well-understood, now more efficient than ever 
‣ NLO: automatized, a flood of results 
‣ NNLO:  top quark production (single and pair), dijet production, 1-jet inclusive, …. 
‣ NNNLO:  Higgs production,  F2(x,Q),

Order 2⇤ 1 2⇤ 2 2⇤ 3 2⇤ 4 2⇤ 5 2⇤ 6
1 LO
�s NLO LO
�2
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Automatic higher order calculations
✦ QCD NLO is automatized 
‣ no limitations in principle, but high multiplicity means longer running 
‣ including matching to parton showers: aMC@NLO in MadGraph5 framework 

‣ NLO EW now also included 
✦ POWHEG Box for NLO + PS 

‣ general framework for NLO + PS 
✦ HELAC-NLO 

✦ Codes increasingly incorportated into exp’tl frameworks

!22

Allwal, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Torrieli, Zaro ’14
approaching 4000 citations..

Frederix, Frixione, Hirschi, Maltoni, Pagani, Shao, Zaro ‘18

Nason, Oleari; + Frxione, Aioli, Re ’04 ff

Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Malamos
Papadopoulos, Pitta, Worek, Shao ’14





Precision for BSM
✦ Top - down BSM 
‣ assume new physics model, or a simplified version, compute signals including (QCD) 

corrections 
‣ much work here has been done for MSSM, compositie models etc 
‣ Example: NLO + NNLL resummed for squark-gluino production 

✓ includes threshold and Coulomb corrections 

‣ improves limit-setting for gluino masses etc. 

✦ Bottom-up BSM 
‣ be agnostic about new physics, parametrize it as effective theory

!24

Beenakker, Borchesnky, Kraemer, Kulesza, EL ‘16

Beneke, Piclum, Schwinn, Wever, ‘16



Standard Model Effective Theory
✦ To parametrize new physics, one can extend the Standard Model with invariant 

dimension-6 operators 

‣ Each operator i has a coefficient Ci. The scale of new physics is Λ, which we take to 
be of order 1 TeV.  

✦ No new particles, discoveries only through new interactions 

✦ Procedure: include these extra operators (as new Feynman rules) in predictions, 
compare with data to set bounds on the Ci.

!25

LSM +
X

i

Ci

⇤2
O

[6]
i + hermitian conjugate
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1.5 The Discovery at a Future
p
s = 33 TeV Experiment 13

Figure 1-32. Dilepton backgrounds and the

clear signal for a LR Z0
at 3 TeV for e+e� pairs

after 3000 fb
�1

.

Figure 1-33. Fully emerged signal for a LR Z0

at 3 TeV, background subtracted for e+e� pairs

after 3000 fb
�1

.

1.5.2 Run 2 of the Future Collider

The beginning of Run 2 started in January of 2030 as expected without any delays. Again, the data
taking went smoothly, and other parallel stories of new physics continued to unfold as theorists struggled to
simultaneously weave the numerous discoveries together into a new and over-arching tapestry explaining the
fundamental laws of the Universe. For the Z 0 story, tertiary measurements of SM couplings in specific decay
channels and even the possible observation of exotic decays, were helping other stories understand their
signal better as data was being recorded. As run two ended in 2034, pile-up had continued to be a battle,
but continually worked on and understood to bring an impressive dataset of 3000 fb�1 at

p
s = 33 TeV to

the physics groups for analysis. With this dataset the Z
0 analysis had been able to increase the number of

recorded Z
0 events by an order of magnitude, bringing unprecendented levels of precision to measurements

of width, mass, couplings, and even AFB (see complimentary white paper for in depth analysis [11]). The
physicists remembered how far they had come from the first days of the LHC at

p
s = 14 TeV, seeing a

few events out at high-mass (Figure 1-1) and wondering if it would just turn out to be a fluctuation of the
Standard Model. Now the picture was very di↵erent, physicist’s and indeed the World’s understanding of
the fundamental properties of the Universe had leaped almost unimaginably, and in the Z

0 analysis they
were now presented with a magnificent and clear signal shape (Figures 1-32 to 1-35), and AFB measurement
that put the discovery of a LRM model Z 0 beyond all doubt (Figure 1-36). This new particle was one that
they were almost getting used to, but which still excited even the newest Graduate students because of its
implications and the theory paradigm shifts that had occurred over the last 15 years because of it.

1.5.3 The
p
s = 33 TeV Experiment Aftermath

The achievement of Engineers and Physicists alike was astounding, a new machine had been built to go
up to energies of

p
s = 33 TeV, and over 3000 fb�1 of data had been collected from pp collisions over the

years. The journey was hard at times, and required continual maintenance and understanding of both the
accelerator and the Snowmass detector, due to the incredibly harsh environment both were being subjected
to, and the level of precision required for the physics analyses to thrive. Again we break the fourth wall and

Community Planning Study: Snowmass 2013
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Effective Field Theory description of New Physics

�5

What indirect searches look for

If Ecoll < MZ’ one can still test 
virtual effects of NP looking for 

“deformations” in SM measurements

For Ecoll << MZ’ these low-energy effects can be 
well described by effective interactions

3.2 Effective description of new vector bosons 71

ψ2

ψ1

gψ1ψ2

V

V µ

gψ3ψ4

V

ψ4

ψ3

W a
µ ,Bµ

Φ†

gφ
V

φ

V µ

gφ
V

Φ†

φ
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µ ,Bµ
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gφ
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Φ†

φ

W a
µ ,Bµ

Figure 3.1: Feynman diagrams relevant for the dimension-six effective Lagrangian.

The terms of order 1/M4
V contribute to operators of dimension eight and higher, and will be

neglected in the following. In particular, we see that, as promised, the “nonlinear” terms in LV−SM

do not contribute to the effective Lagrangian up to dimension six, and can be ignored. The result
Eq. (3.2) includes a few operators that are not in the basis introduced in Table 1.8. In order to
compare with previous work, it is convenient to express the result in our basis, performing some
Fierz reorderings and field redefinitions (equivalent to the use of the SM EOM on the dimension-six
operators). The final result can then be written as

LV
6 = −

ηV

2M2
V

(JV
µ )†JV µ =

∑∑∑

i

αi

M2
V

Oi

gψ1ψ2

V gψ3ψ4

V

M2
V

[ψ1 ⊗ γµψ2]RV [ψ3 ⊗ γµψ4]RV

gφ
V gφ

V

M2
V

[Φ† ⊗Dµφ]RV [Dµφ† ⊗Φ]RV

gφ
V gψ1ψ2

V

M2
V

[Φ† ⊗Dµφ]RV [ψ1 ⊗ γµψ2]RV

where Oi are the operators collected in Table 1.8, and αi their dimensionless numerical coeffi-
cients. It is clear from the general expression Eq. (3.2), and also from the Feynman diagrams in
Fig. 3.1, that the terms in the effective Lagrangian can be of three basic forms:

1. Four fermions :
g
ψ1ψ2
V g

ψ3ψ4
V

M2
V

[ψ1 ⊗ γµψ2]RV [ψ3 ⊗ γµψ4]RV .
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95 % C.L. limits on (some) dimension-six interactions
F. del Águila, J.B., Fortsch. Phys. 59 (2011) 1036-1040 (arXiv:1105.6103 [hep-ph])

Four-fermion interactions
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In general, the whole set of such possible  
deformations can be studied with minimal  
reference to the nature of the UV theory

Ecoll

(e.g Z’ effects in dilepton spectrum)
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No resonance  
but ≠ SM

• BSM Effective Field Theories (EFT) are, by construction, a formalism for 
indirect tests of new physics 




Precision for other future colliders



Precision of  αs

✦ Global average (various classes observables) 

‣ about 1% uncertainty, based on NNLO and above predictions  
✦ We shall need ∿0.1% in the future 
‣ Higgs, top physics, EW precision tests 
‣ Higher jet-multiplicity observables
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Figure 9.2: Summary of determinations of αs(M2
Z) from the six sub-fields

discussed in the text. The yellow (light shaded) bands and dashed lines indicate the
pre-average values of each sub-field. The dotted line and grey (dark shaded) band
represent the final world average value of αs(M2

Z).

below, it may be worth mentioning that the collider results listed above average to a
value of αs(M2

Z) = 0.1172 ± 0.0059.

So far, only one analysis is available which involves the determination of αs from

June 5, 2018 19:47
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hadron collider data in NNLO of QCD: from a measurement of the tt cross section at√
s = 7 TeV, CMS [370] determined

αs(M
2
Z) = 0.1151+0.0028

−0.0027 ,

whereby the dominating contributions to the overall error are experimental (+0.0017
−0.0018), from

parton density functions (+0.0013
−0.0011) and the value of the top quark pole mass (±0.0013).

This latter result will enter our determination of the new world average of αs, and
will thereby open a new sub-field of αs determinations in this Review. We note, however,
that so far there is only this one result in this sub-field. While there are more recent
measurements of tt cross sections from ATLAS and from CMS, at

√
s = 7, 8 and at

13 TeV, none quotes further extractions of αs. A more reliable result will thus be left to
the next Review, however we note that the most recent measurements of tt cross sections
imply larger values of αs(M2

Z) than the one which we use, at this time, as result for this
sub-field.

9.4.7. Electroweak precision fit :
The N3LO calculation of the hadronic Z decay width [35] was used in the latest update
of the global fit to electroweak precision data [437], resulting in

αs(M
2
Z) = 0.1196 ± 0.0030 ,

claiming a negligible theoretical uncertainty. We note that results from electroweak
precision data, however, strongly depend on the strict validity of Standard Model
predictions and the existence of the minimal Higgs mechanism to implement electroweak
symmetry breaking. Any - even small - deviation of nature from this model could strongly
influence this extraction of αs.

9.4.8. Determination of the world average value of αs(M2
Z) :

Obtaining a world average value for αs(M2
Z) is a non-trivial exercise. A certain

arbitrariness and subjective component is inevitable because of the choice of measurements
to be included in the average, the treatment of (non-Gaussian) systematic uncertainties
of mostly theoretical nature, as well as the treatment of correlations among the various
inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for sub-fields of measurements which are
considered to exhibit a maximum of independence between each other, considering
experimental as well as theoretical issues. The six pre-averages are summarized in
Fig. 9.2. We recall that these are exclusively obtained from extractions which are based
on (at least) full NNLO QCD predictions, and are published in peer-reviewed journals at
the time of completing this Review. These pre-averages are then combined to the final
world average value of αs(M2

Z), using the χ2 averaging method and error treatment as
described above. From these, we determine the new world average value of

αs(M
2
Z) = 0.1181 ± 0.0011 , (9.23)
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Bethke, Dissertori, Salam ‘18

20

The strong coupling constant as (today at das ∼ 1.8% up to pT∼ 2 TeV)
Determined by comparing experimental observables to pQCD (NNLO or N3LO) predictions. 
Need for a high-luminosity e+e- collider at EW scales and a high-luminosity ep collider.
das at 0.1% precision is essential for H, t, EWPO at colliders.

FCC-ee
from hadronic Z decays das <0.15% (today 2.5%)
from hadronic W decays das < 0.2% (today 35%)
from hadronic t decays das < 1% (today 1.5%)
event shapes das < 1% (today 2.9%)

FCC-hh
from top quark pair production
test the running of as up to 25 TeV (jet cross sections)

Lattice QCD
with adequate R&D on computing a robust calculation up 
to 0.3% precision might be within reach

FCC-eh or LHeC
with DIS would be able to reach das ∼ 0.1-0.2% 



EWPOs
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Electroweak Observables at Future Colliders

ILC: 
◦ “Giga-Z” running not part of baseline 

but maybe later

28

1012 Z’s
“Tera-Z”

M. Lancaster

Top mass exp’t error: 25 MeV expected
Theory one larger at present.
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Figure	3:	Left:	The	expected	precisions	in	a	selected	set	of	EW	precision	measurements	
at	the	CEPC	and	the	comparison	of	precisions	with	the	LEP	experiments	[1].		Right:	The	

constraint	on	the	oblique	parameters	[1].	
	
	

											 	
	
Figure	4:	Testing	naturalness	with	the	Higgs	coupling	measurements	in	composite	Higgs	

models	(left)	and	models	with	neutral	top	partners	(right)	[1].	
	
	

																									 	
	
Figure	5:	CEPC	sensitivity,	through	the	measurement	of	the	Higgs-Z	coupling,	to	models	

which	have	a	first	order	electroweak	phase	transition	[1].	
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Electroweak corrections

✦ QED corrections are also becoming quite important at the LHC 
‣ NNLO in QCD = NLO in EW 
‣ Photons in protons: LUXqed formalism  

✓ Extract from precise ep data → large increase in precision! (% level) 

✦ EW loop corrections: many scales  
‣ particular relevant for EW precision observables 
‣ at large pT in hadron colliders

!29

Manohar, Nason,  Salam, Zanderighi ‘17

Lµ⌫Wµ⌫ (DIS) = �̂e� ⌦ f�/p (�PDF)
<latexit sha1_base64="NapYwvCZH/B/4p2pMZcMQL/DZGQ="></latexit>

Figure 3.2. Comparison between �(x,Q) in the NNPDF3.1luxQED NLO and NNLO fits.
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Figure 3.3. Comparison between the photon PDF �(x,Q) in NNPDF3.0QED and in NNPDF3.1luxQED
at Q = 1.65 GeV (left) and at Q = 100 GeV (right plot). In the latter case, results are normalised to the
central value of NNPDF3.0QED.

as 68% confidence-level (CL) intervals, with the central value taken to be the midpoint of the
interval. In Fig. 3.3 we show the photon distributions from these two sets at Q = 1.65 GeV (left
plot) and Q = 100 GeV (right plot). We find that both at low and high scales, in the region
x
⇠
> 2⇥ 10�2 the two determinations agree within uncertainties. For x

⇠
< 2⇥ 10�2 instead, the

NNPDF3.0QED photon undershoots NNPDF3.1luxQED by up to 40% at Q = 100 GeV. At
high scales, PDF uncertainties in NNPDF3.0QED are at the level of a few percent at small x
but become as large as almost 100% at large x. The uncertainties in NNPDF3.1luxQED are
instead at the level of a few percent over the entire range in x (see also Fig. 3.1).

As shown in Fig. 3.3, for x
⇠
< 10�2 the NNPDF3.0QED photon undershoots the 3.1luxQED

one both at low and at high scales by an amount which is not covered by the PDF uncertainties
of the former. There are at least two possible contributions to such di↵erences. First of all,
the inclusion of O(↵2) and O(↵↵s) terms in the DGLAP equations (absent in NNPDF3.0QED),
accounts to up to a di↵erence of 5% when the photon PDF is evolved from Q0 = 1.65 GeV to
Q = 100 GeV (see also Fig. 2.1), explaining part of the discrepancy.

The second, and more important, potential reason is related to the fact that in NNPDF2.3QED
the boundary condition �(x,Q0) was determined from a fit to DIS and Drell-Yan cross-sections
using di↵erent settings for the QCD+QED evolution equations [39] as compared to those used
later to construct NNPDF3.0QED. This partial mismatch then seems to lead to a suppres-
sion of the photon PDF at small-x, explaining some of the di↵erences observed in Fig. 3.3. In
this context, recall than in NNPDF2.3QED the photon PDF was constrained mostly by the
LHC Drell-Yan measurements, which makes tricky the mapping between how di↵erent evolu-
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High precision at lepton collider: Higgs couplings
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Improvements w.r.t. HL-LHC
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Some prospects for more precision



News from PDFs: theory errors
✦ PDF errors dominant for many LHC predictions. Thus far they only reflect the 

uncertainties of measurements and their correlations 
✦ First step in including uncertainties from Missing Higher Orders, by fitting PDF’s for 

a set of  !  values, and from there sum the exp.(“C”) and th. (“S”) covariance 
matrix 

✦ Introduces much more correlations between experimental inputs

µR, µF
<latexit sha1_base64="DB8fen84pPpTp1Q4aHE3gpHwEjY="></latexit>
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2

Process Type Datasets

DIS NC NMC, SLAC, BCDMS, HERA NC

DIS CC NuTeV, CHORUS, HERA CC

DY CDF, D0, ATLAS, CMS, LHCb (y, pT , Mll)

JET ATLAS, CMS inclusive jets

TOP ATLAS, CMS total+di↵erential cross-sections

TABLE I: Classification of datasets into process types.

where �(k)
i = T (k)

i � T (0)
i is the expected shift with re-

spect to the central theory prediction for the i-th cross-

section, T (0)
i , due to the theory uncertainty, and N is a

normalization factor determined by the number of inde-
pendent nuisance parameters. Since theory uncertainties
are independent of the experimental ones, they can be
combined with them in quadrature: the �2 used to as-
sess the agreement of theory and data is given by

�2 =
NdatX

i,j=1

⇣
Di � T (0)

i

⌘
(S + C)�1

ij

⇣
Dj � T (0)

j

⌘
, (2)

with Di the central experimental value of the i-th data-
point, and Cij the experimental covariance matrix. More
details of the implementation of the theory covariance
matrix in PDF fits may be found in Refs. [9, 10].

The choice of nuisance parameters �(k)
i used in Eq. (1)

to estimate a particular theoretical uncertainty is not
unique, reflecting the fact that such estimates always
have some degree of arbitrariness. Here we focus on the
MHOU, and choose to use scale variations to estimate

�(k)
i . A standard procedure [1] is the so-called 7-point

prescription, in which the MHOU is estimated from the
envelope of results obtained with the following scales

(kf , kr) 2 {(1, 1), (2, 2), ( 12 ,
1
2 ), (2, 1), (1, 2), (

1
2 , 1), (1,

1
2 )}

where kr = µr/µ
(0)
r and kf = µf/µ

(0)
f are the ratios

of the renormalization and factorization scales to their
central values. Varying µr estimates the MHOU in the
hard coe�cient function of the specific process, while the
µf variation estimates the MHOU in PDF evolution.
In order to compute a covariance matrix, we must not

only choose a set of scale variations, but also make some
assumptions about the way they are correlated. We do
this by, first of all, classifying the input datasets used in
PDF fits into processes as indicated in Table I: charged-
current (CC) and neutral-current (NC) deep-inelastic
scattering (DIS), Drell-Yan (DY) production of gauge
bosons (invariant mass, transverse momentum, and ra-
pidity distributions), single-jet inclusive and top pair pro-
duction cross-sections. Note that this step requires mak-
ing an educated guess as to which cross-sections are likely
to have a similar structure of higher-order corrections.
Next, we formulate a variety of prescriptions of how to

construct Eq. (1) by picking a set of scale variations and

correlation patterns. A simple possibility is the 3-point
prescription, in which we vary coherently both scales
(thus setting kf = kr) by a fixed amount about the cen-
tral value, independently for each process. More sophis-
ticated prescriptions are constructed by varying the two
scales independently, but by the same amount, and as-
suming that while µr is only correlated within a given
process, µf is fully correlated among processes. This as-
sumption is based on the observation that µf variations
estimate the MHOU in the evolution equations, which
are universal (process-independent). In the appendix we
provide expressions for Sij in the 3- and 9-point cases.

We then proceed to the validation of the resulting co-
variance matrices at NLO. We use the same experimen-
tal data and theory calculations as in the NNPDF3.1
↵s study [13] with two minor di↵erences: the value of
the lower kinematic cut has been increased from Q2

min =
2.69 GeV2 to 13.96 GeV2 in order to ensure the valid-
ity of the perturbative QCD expansion when scales are
varied downwards, and the HERA F b

2 and fixed-target
Drell-Yan cross-sections have been removed (for technical
reasons). In total we then have Ndat = 2819 data points.
The theory covariance matrix Sij has been constructed
by means of the ReportEngine software [14] taking as in-
put the scale-varied NLO theory cross-sections Ti(kf , kr),
provided by APFEL [15] for the DIS structure functions
and by APFELgrid [16] combined with APPLgrid [17] for
the hadronic cross-sections.

Since for the processes in Table I the NNLO predictions
are known, we can then validate the NLO covariance ma-
trix against the known NNLO result. For this exercise,
a common input NLO PDF is used in both cases. In or-
der to validate the diagonal elements of Sij , which corre-
spond to the overall size of the MHOU, we first normalise

it to the central theory prediction, bSij = Sij/T
(0)
i T (0)

j .
Then we compare in Fig. 1 the relative uncertainties,

�i =
q

bSii to the relative shifts between predictions at

NLO and NNLO, �i = (T (0),nnlo
i � T (0),nlo

i )/T (0),nlo
i , for

each of the Ndat = 2819 cross-sections. In all cases, �i
turns out to be smaller or comparable to �i, showing that
this prescription provides a good (if somewhat conserva-
tive) estimate of the diagonal theory uncertainties.

The validation of the full covariance matrix including
correlations is subtler. We first diagonalise bSij , by find-
ing the (orthonormal) eigenvectors eai which correspond
to positive eigenvalues (sa)2: these define a subspace S
orthonormal to the large null subspace. The dimension
NS of S depends on the total number of independent
scale variations, the number of processes, and the corre-
lation pattern. For the 5 processes in Table I, and the
9-point prescription, we find NS = 28, while for the sim-
pler 3-point prescription NS = 6. We then compute the
NS projections �a of the NLO-NNLO shifts �i along each
eigenvector, and compare them to the square root of the
corresponding eigenvalues, sa. Finally we compute the

3

FIG. 1: The relative uncertainties �i (9-point prescription)
on the 2819 datapoints used in the PDF fit, compared to the
known NLO-NNLO relative shifts �i in theory prediction.

FIG. 2: The square root eigenvalues sa of the theory covari-
ance matrix bSij computed using the 9-point prescription, and
the projections �a of the NNLO-NLO shift vector �i on the
eigenvectors. The length |�miss

i | of the component of �i lying

in the null subspace of bSij is also shown.

length |�miss
i | of the remaining component of the vector

�i that lies in the null subspace of bS.
The validation can be considered successful if the an-

gle ✓ = arcsin(|�miss
i |/|�i|) is small, meaning that the

NNLO-NLO shift lies substantially within the subspace
S estimated by the scale variations, and furthermore if
|�a| ' |sa|, so that the size of the shift along each eigen-
vector is correctly estimated by the corresponding eigen-
value. Using the 9-point prescription, for individual pro-
cesses we find ✓ = 3o, 14o, 22o, 32o, 16o for top, jets, DY,
NC and CC DIS respectively. For the complete dataset
with the same prescription we find ✓ = 26o. The pro-
jected shifts and eigenvalues are compared in Fig. 2. We
conclude that the validation is successful: remarkably,
the pattern of correlations of theory shifts in a 2819-

FIG. 3: The combined experimental and theoretical (9-point)
correlation matrix for the Ndat cross-sections in the fit.

C C + S(3pt) C + S(9pt)

�2 1.139 1.139 1.109

� 0.314 0.310 0.315

TABLE II: The central �2 per datapoint and the average
uncertainty reduction � for the 3-point and 9-point fits.

dimensional vector space is well captured by just 28 nui-
sance parameters.

Adding the theory covariance matrix Sij to the exper-
imental covariance matrix Cij , while increasing the diag-
onal uncertainty on each individual prediction, also (and
perhaps more importantly) introduces a set of theory-
induced correlations between di↵erent experiments and
processes, even when the experimental data points are
uncorrelated. This is illustrated in Fig. 3, showing the
combined experimental and theoretical (9-point) correla-
tion matrix: it is clear that sizable correlations appear
even between experimentally unrelated measurements.

We can now proceed to a NLO global PDF determina-
tion with a theory covariance matrix Sij computed using
the 9-point prescription. From the point of view of the
NNPDF fitting methodology, the addition of the theory
contribution to the covariance matrix does not entail any
changes: we follow the procedure of Ref. [18], but with
the covariance matrix Cij now replaced by Cij+Sij , both
in the Monte Carlo replica generation and in the fitting.
In Table II we show some fit quality estimators for the
resulting PDF sets obtained using only the experimental
covariance matrix, and then also the theory covariance
matrix with two di↵erent prescriptions. In particular,
we show the �2 per datapoint and the � estimator [18],
which corresponds to the ratio of the uncertainty in the
predictions using the output PDFs to that of the original

NNPDF collab.’19

 42

QCD-induced cross-talk

Experiment-induced 
correlations: 

only present within a 
single dataset



News from PDFs: theory errors
✦ Validation: see at NLO if the NNLO central value is in the MHO uncertainty band 
✦ Looks ok:

!33
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FIG. 4: The gluon and quark singlet PDFs from the
NNPDF3.1 NLO fits without and with the MHOU (9-points)
in the covariance matrix at Q = 10 GeV, normalised to the
former. The central NNLO result is also shown.

data. The quality of the fit is improved by the inclusion
of the MHOU, with the 9-point prescription performing
rather better than 3-point. Interestingly, � is una↵ected
by the inclusion of the theory covariance matrix, implying
that taking the MHOU into account does not increase the
PDF uncertainties in the fitted cross-sections but instead
resolves some of the tensions between data and theory,
so that the larger overall uncertainty is compensated by
the improved fit quality.

In Fig. 4 we compare at Q = 10 GeV the gluon and
quark singlet PDFs obtained at NLO with and with-
out theory covariance matrix, normalised to the latter.
We also show the central NNLO result when the the-
ory covariance matrix is not included. Three features of
this comparison are apparent. First, when including the
MHOU, the increase in PDF uncertainty is rather mod-
erate (as seen in Tab. II, the uncertainty on predictions is
unchanged). Second, the NLO-NNLO shift is fully com-
patible with the overall uncertainty. Finally, also the cen-
tral value is modified by the inclusion of Sij in the fit, as
the balance between di↵erent data sets adjusts according
to their relative theoretical precision. Interestingly, the
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FIG. 5: Same as Fig. 4 for the gluon, comparing the 3-point
and 9-point prescriptions as a ratio to the latter.

central prediction shifts towards the known NNLO result,
showing that, thanks to the inclusion of the MHOU, the
overall fit quality has improved.

Finally, in Fig. 5 we compare the dependence of the
fit results on the specific choice of prescription for Sij ,
specifically for the 3- and 9-point cases, normalized to
the latter. Whereas results with the 3-point prescription
have somewhat smaller uncertainties, and a central value
which is closer to that when the MHOU is not included
(see Fig. 4), in general the results are consistent.

An alternative way of benchmarking our results is to
compare to PDFs determined using di↵erent choices of
central scale. One may then compare the PDF fit results
obtained using Eq. (2) to the envelope of PDF central
values obtained with di↵erent scale choices in the theory
prediction Ti(kf , kr). This option is briefly discussed in
the appendix and more in detail in [12].

In summary, we have presented the first global PDF
analysis that accounts for the MHOU associated to the
fixed order QCD perturbative calculations used in the fit.
The inclusion of the MHOU shifts central values by an
amount that is not negligible on the scale of the PDF un-
certainty, moving the NLO result towards the result of
the NNLO fit. PDF uncertainties increase moderately,
because of the improvement of fit quality due to the re-
balancing of datasets according to their theoretical pre-
cision. Note that for this to be e↵ective, the correlations
in Sij play a crucial role.

Our results pave the way towards a fully consistent
treatment of MHOU for precision LHC phenomenology.
The NLO results presented here will be upgraded to
NNLO, and this will be facilitated by tools such as the
APPLfast grid interface to the NNLOJET program [19].
We thus anticipate that the upcoming NNPDF4.0 PDF
set will be able to fully account for MHOU both at NLO
and NNLO, as well as other sources of theory uncertainty,
such as those related to nuclear corrections [10, 20].



QCD precision at REALLY high order I
✦ five-loop QCD beta function 
‣ first done for SU(3) , then for SU(N)  

✓ using R* method to extract divergences 
✓ 6 days on 32 core machine 

‣ five loop expansion in MSbar scheme very benign 

✓ less than 1% change due to 5-loop term, even at αs=0.47 
✦ implications for running coupling:

!34

Baikov, Chetyrkin, Kühn ‘16
Herzog, Ruijl, Ueda, Vermaseren, Vogt ’17, 

R∗ and five-loop calculations Ben Ruijl

4. Five-loop results

In this section we briefly discuss the five-loop results for the beta function and the Higgs-boson

decay to gluons. With the same setup, we have also computed the Higgs decay to bottom quarks

and the electromagnetic R-ratio at five loops [12]. Since these were re-computations, see ref. [15]

and ref. [16] and references therein, respectively, we will not address these results here.

4.1 The beta function

Using the method described above, we have computed the five-loop beta function of QCD (obtained

before in ref. [17]) and its generalizations to a general compact gauge group in the standard MS

scheme, using the background field method in the Feynman gauge [11]. See refs. [18,19] for more

recent calculations with gauge dependence. The analytic result in terms of rational numbers and

the values ζn , n = 3,4,5 of the Riemann ζ -function can be found in eq. (3.5) of ref. [11].

The MS result can be transformed to the MiniMOM (MM) scheme [20, 21], which may be

more convenient for extending analyses of the strong coupling constant into the non-perturbative

regime, using the FORCER calculations of four-loop vertex functions in ref. [22]. For the gauge-

dependent general result see eq. (B.4) of ref. [22]. It is interesting to note, e.g., in the context of

refs. [23,24]2, that the MiniMOM beta function in the Landau gauge, unlike the MS result, does not

include ζ4. The same was observed for the beta function of QED in the MOM scheme in ref. [28].

For further discussions of the issue of the ζ -function values, see ref. [29] and references therein.

The numerical expansion of the MS beta function of QCD is very benign to five loops with

β̃ (αs,nf =3) = 1+0.565884αs +0.453014α 2
s +0.676967α 3

s +0.580928α 4
s + . . . ,

β̃ (αs,nf =4) = 1+0.490197αs +0.308790α 2
s +0.485901α 3

s +0.280601α 4
s + . . . ,

β̃ (αs,nf =5) = 1+0.401347αs +0.149427α 2
s +0.317223α 3

s +0.080921α 4
s + . . . (4.1)

for β̃ ≡−β (as)/(a2
s β0) with β0 = 11−2/3 nf and as = αs/(4π). The five-loop (N4LO) contribu-

tion changes the beta function by less than 1% at αs = 0.47 for nf = 4 and at αs = 0.39 for nf = 3

quark flavours. The Nn≥2LO coefficients are larger in the Landau-gauge MiniMOM scheme,

β̃MM(αs,nf =3) = 1+0.565884αs +0.941986α 2
s +2.30450α 3

s +6.64749α 4
s + . . . ,

β̃MM(αs,nf =4) = 1+0.490197αs +0.645215α 2
s +1.63846α 3

s +3.46687α 4
s + . . . ,

β̃MM(αs,nf =5) = 1+0.401347αs +0.328852α 2
s +1.02689α 3

s +0.84177α 4
s + . . . (4.2)

where αs ≡ α MM
s , and exhibit a definite growth with the order that is absent in the MS case.

The different behaviour of the αs-expansion of the beta function of QCD in these two schemes

is illustrated in the upper part of fig. 1. At α MM
s = 0.25, which corresponds to an MS value of

αs = 0.2 for nf = 4 at N4LO – for the conversion see eq. (B.2) of ref. [22] – the individual N2LO,

N3LO and N4LO contributions add 3.6%, 2.3% and 1.2%, respectively, to the total NLO result.

2 It appears that Euclidean physical quantities do not receive even-n ζn, i.e., π2, contributions in renormalization

schemes, such as MiniMOM or the scheme suggested in ref. [25], in which the beta function is free of such terms.

Beyond the cases covered in refs. [23, 24], this has also been established to N4LO [26] for the scheme-independent

versions, see refs. [19, 27] of all 11 propagator and vertex functions computed in ref. [22].
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R∗ and five-loop calculations Ben Ruijl
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Figure 1: Upper panels: the N2LO, N3LO and N4LO approximation to the beta function of QCD with four

flavours in the MS and MiniMOM (MM) schemes, normalized to their common NLO values. Lower panels:

the resulting scale dependence of the respective coupling constants for order-independent reference values

of 0.2 for MS and 0.25 for MM at µ2 = 40 GeV2.

Unlike the MS case, where the expansion appears to converge up to rather large values of αs, the

N3LO contribution exceeds the N2LO one for αs ≥ 0.4, and the N4LO effect that at N3LO for

αs > 0.47.

Hence, as illustrated in the lower part of fig. 1, also the running of αs in the MiniMOM scheme

becomes unstable at a scale of about µ ≈ 2 GeV. For a comparison of the scale stability of the

R-ratio in these two schemes at a moderate (αs(Q2)≃ 0.2 with nf = 4 in MS) and a small (αs(Q2)≃
0.3 and nf = 3) scale, see figs. 5 and 6 of ref. [12].
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QCD precision at REALLY high order II
✦ QCD splitting functions at four and five loops 

‣ at three loops (NNLO) known analytically; at 4 loops in part numerically, at 5 loops 
some moments 

‣

!35

Anomalous dimensions and splitting functions beyond NNLO A. Vogt

1. Introduction

Up to power corrections, observables in ep and pp hard scattering can be schematically expressed as

Oep = fi ⊗ co
i , O pp = fi ⊗ fk ⊗ co

ik (1.1)

in terms of the respective partonic cross sections (coefficient functions) co and the universal parton

distribution functions (PDFs) fi (x,µ
2) of the proton at a scale µ of the order of a physical scale.

The dependence of the PDFs on the momentum fraction x is not calculable in perturbative QCD;

their scale dependence is given by the renormalization-group evolution equations
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The splitting functions Pik , which are closely related to the anomalous dimensions of twist-2

operators in the light-cone operator-product expansion (OPE), and the coefficient functions in

eq. (1.1) can be expanded in powers of the strong coupling as ≡ αs(µ2)/(4π),
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Together, the first three terms of eqs. (1.3) and (1.4) provide the NNLO approximation for the

observables (1.1). This is now the standard accuracy of perturbative QCD for many hard processes;

see refs. [1, 2] for the corresponding helicity-averaged and helicity-dependent splitting functions.

N3LO corrections have been obtained for inclusive lepton-hadron deep-inelastic scattering (DIS)

[3], Higgs production in proton-proton collisions [4,5], and jet production in DIS [6]. N4LO results

for inclusive DIS have been reported in refs. [7] (sum rules) and ref. [8] (low Mellin-N moments).

Using basic symmetries, the system (1.2) can be decomposed into 2nf −1 scalar ‘non-singlet’

equations and a 2×2 flavour-singlet system. The former includes 2(nf −1) flavour asymmetries of

quark-antiquark sums and differences, qi ± q̄i, and the total valence distribution,

q±
ns,ik = qi ± q̄i − (qk ± q̄k) , qv = ∑

nf

r=1 (qr − q̄r) . (1.5)

The singlet PDFs and their evolution are given by
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where g(x,µ2) denotes the gluon distribution. Pqq differs from the splitting function P+
ns for the

combinations q+
ns,ik in Eq. (1.5) by a pure singlet contribution Pps which is suppressed at large x.

In this limit, the splitting functions Pqq and Pgg in the standard MS scheme are of the form

P
(n−1)

kk (x) =
xAn,k

(1− x)+
+ Bn,k δ (1−x) + Cn,k ln(1−x) + Dn,k + (1−x) -terms , (1.7)

where An,q and An,g are the (light-like) n-loop quark and gluon cusp anomalous dimensions [9].

These and the ‘virtual anomalous dimensions’ Bn,k are relevant well beyond the context of Eq. (1.2).

In this contribution we briefly report on recent N3LO (4-loop) results for the singlet splitting

functions in eq. (1.6), including the gluon cusp anomalous dimension A4,g [10], and on the first

N4LO (5-loop) calculations of the non-singlet splitting functions P±
ns . For the (more advanced)

status of the 4-loop non-singlet splitting functions the reader is referred to refs. [11–13].
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Here we have included nf = 0 besides the physically relevant values, since it provides useful infor-

mation about the behaviour of the perturbation series. The N4LO coefficients in (4.1) and (4.2) are

larger than one may have expected from the NNLO and N3LO contributions.

It is interesting in this context to consider the effect of the quartic group invariants. For exam-

ple, the nf = 0 coefficients in eqs. (4.1) and (4.2) at N3LO and N4LO can be decomposed as

2.3617 = 2.0878 + 0.1096d
(4)
FA /nc

4.520 = 3.552 − 0.0430d
(4)
FA /nc + 0.0510d

(4)
AA /na (4.3)

and

2.0954 = 2.0624 + 0.0132d
(4)
FA /nc

3.954 = 3.371 − 0.0171d
(4)
FA /nc + 0.0371d

(4)
AA /na (4.4)

with d
(4)
FA /nc = 5/2 and d

(4)
AA /na = 135/8 in QCD, see, e.g., app. C of ref. [32]: Without the rather

large contributions of d
(4)
AA , which enter at N4LO for the first time, the series would look much

more benign with consecutive ratios of 1.4 to 1.6 between the N4LO, N3LO, NNLO and NLO

coefficients. This sizeably d
(4)
AA contribution (∼ n2

c + 36) also implies that the leading large-nc

contribution provides a less good approximation at N4LO than at the previous orders.

The numerical impact of the higher-order contributions to the splitting functions P±
ns on the

N = 2 and N = 3 moments of the respective PDFs (1.5) are illustrated in fig. 3. At αs(µ2
f ) = 0.2

and nf = 4, the N4LO corrections are about 0.15% at µr = µ f , roughly half the size of their N3LO

counterparts. Varying µr up and down by a factor of 2 – the required additional terms for the

splitting functions can be found to N4LO, e.g., in eq. (2.9) of ref. [33] – one arrives at a band with

a full width of about 0.7%. The N3LO and N4LO corrections are about twice as large at a lower

scale with αs(µ2
f ) = 0.25 and nf = 3.
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Figure 3: Left and middle panel: the renormalization-scale dependence of the logarithmic factorization-

scale derivatives of the PDFs q+
ns at N = 2 and q−

ns at N = 3 at our standard reference point with αs(µ 2
f ) = 0.2

and nf = 4. Right panel: the corresponding N = 3 results at a lower scale with αs(µ 2
f ) = 0.25 and nf = 3.
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Prospects for further QCD accuracy
✦ There is a “vibrant” community addressing NNLO for 2 → 3, N3LO and beyond 
✦ Involves progress in 
‣ loop diagrams: analytical and numerical approaches 
‣ IR divergence management, new subtraction mechanisms, phase space slicing 

making a comeback 
‣ Shuffle/Hopf algebra of polylogs to 3rd order → elliptic integrals 
‣ threshold expansions  
‣ automation, computing methods

!36



Soft logarithms at next-to-leading power
✦ General soft expansion for 2→1 processes 

✦ NLP logarithm organization  
‣ exhibit all-order patterns. Leading logarithmic resummation now achieved for a 

number of reacions  

‣ technology also used to extend phase space slicing methods for NNLO calculations 
(using N-jettiness) to NLP 
✓ for much better numerical behavior

!37
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Figure 7: Higgs boson production via gluon-gluon fusion, where • denotes the e↵ective
coupling resulting from the integration of the top quark loop.

Ref. [64], leading to a result identical in form to Eq. (90) for the squared amplitude. Indeed
one finds
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As in the quark case, this takes the form of the LO non-radiative transition probability, with
kinematics shifted according to Eq. (91), dressed by a single leading-power soft emission,
whose colour factor in this case reflects the emission from an initial-state gluon rather than
an initial-state (anti)-quark. The factorisation of phase space will be identical to the previous
section, given that this is independent of the particle species. One then obtains the resummed
result
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(zŝ) , (108)

where the soft function on the right-hand side is defined in terms of Wilson lines in the adjoint
representation. One may then follow similar arguments to those leading to Eq. (106), yielding
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A check of these results is that it reproduces known LP, and conjectured NLP results for
Higgs boson production, in the large top mass limit. As is well-known, the LO process
consists of an e↵ective coupling between the Higgs boson and a pair of gluons, as shown
in Figure 7. Higher-order contributions near threshold have been discussed for example in
Ref. [33], which expressed the hadronic cross section for the gg channel as
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Here g(xi, µ
2) is the gluon distribution, we have set the factorisation and the renormalisation

scales to the common value µ, and cgg a perturbative coe�cient function. Furthermore, we
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Elliptic progress: from math for loops 
✦ Polylogarithms appear after doing loop integrals 

‣ and more generallly multiple polylogarithms (MPL’s) 

✦ They obey a “shuffle algebra” 

‣ which can greatly simplify results. Its math properties help compute loop integrals 
✦ At two loop and certainly beyond “elliptic” functions start appearing, including 

‣ extensions of MPL technology to elliptic case are appearing

!38

Section 5 we show that the same ideas can be applied also for the two-loop kite integral

with di↵erent internal masses. Finally, in Section 6 we draw our conclusions.

2 Review of Elliptic Polylogarithms

Our goal in this paper is to show explicitly how the notion of elliptic multiple polyloga-

rithms (eMPLs) developed in refs. [25, 40, 44, 52] can be put into action for a wide range

of Feynman integrals known not to be expressible in terms of ordinary MPLs. Before

presenting the inner workings of this framework in specific examples, in this section we

review the necessary concepts in the context of both ordinary and elliptic MPLs, and in

particular the eMPLs introduced recently in ref. [52]. The literature on eMPLs is vast, so

here we content ourselves with summarising only the most important aspects necessary for

the present calculations and refer the interested reader to refs. [40, 52] for more detailed

discussions.

Multiple polylogarithms are multi-valued functions defined recursively as iterated in-

tegrals over kernels which are rational functions with at most simple poles. The most

well-known examples are the classic polylogarithms Lin(x), of which the logarithm is a

special case,

Li1(x) = � log(1� x) , Lin(x) =

Z
x

0

dx
0

x0
Lin�1(x

0) . (2.1)

General MPLs are functions of many variables ai denoting the poles of the rational inte-

gration kernels, as well as the endpoint of the integration contour,

G(a1, . . . , an;x) =

Z
x

0

dt

t� a1
G(a2, . . . , an; t) , G(;x) = 1 . (2.2)

They satisfy properties such as homotopy invariance (they do not depend on the details of

the integration path and as such are functions only of its endpoint x) and shu✏e relations,

G(a1, . . . , ak;x)G(ak+1, . . . , ak+l;x) =
X

�2⌃(k,l)

G(a�(1), . . . , a�(k+l);x) , (2.3)

where ⌃(k, l) stands for all order-preserving permutations of {a1, . . . , ak}[{ak+1, . . . , ak+l},
called shu✏es.

It is possible to assign notions of length and weight to MPLs. The length of an iterated

integral (polylogarithmic or not) is always defined as the number of integrations, thus the

length of an MPL G(a1, . . . , an;x) is n. The notion of weight, however, is more subtle.

For MPLs, the weight is the same as the length, but as will become clear once we discuss

its elliptic version, this is not the general case. One can also assign a notion of weight for

constants which correspond to MPLs evaluated at special arguments. While a constant has

length zero (there are no integrals left to perform; see ref. [52] for a detailed discussion),

the weight remembers that of the iterated integral it originated from. For example,

log(�1) = i⇡ ! Weight(i⇡) = 1 , Length(i⇡) = 0 ,

⇣n = Lin(1) ! Weight(⇣n) = n , Length(⇣n) = 0 .
(2.4)
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Upon total di↵erentiation, MPLs undergo a length drop, and their di↵erential takes a

particularly simple form,

dG(a1, . . . , an; z) =
nX

i=1

G(a1, . . . , âi, . . . , an; z) d log
ai�1 � ai

ai+1 � ai
, (2.5)

where we defined a0 ⌘ 0 and an+1 ⌘ z. Functions whose total di↵erential does not contain

any homogeneous term are referred to as unipotent, and this concept will become important

in the following discussions.

Elliptic generalisations of MPLs are functions which behave like MPLs but accommo-

date (in addition to the kernels 1/(x � a)) functions which are rational in the variables x

and y which define an elliptic curve, i.e. [x, y, 1] 2 CP2 where x and y satisfy a polynomial

equation y
2 = Pn(x) of degree n = 3, 4. For our purposes, we consider only the case with

n = 4 since the n = 3 case can be seen a gauge-fixed version of the former and the examples

we consider arise naturally as square roots of degree-four polynomials. Therefore, we are

interested in iterated integrals of rational functions in the variables (x, y) subject to the

constraint

y
2 = P4(x) = (x� a1)(x� a2)(x� a3)(x� a4) . (2.6)

The elements of the vector ~a ⌘ (a1, a2, a3, a4) are referred to as the branch points of the

elliptic curve. The periods and quasi-periods of the elliptic curve are chosen according to
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where
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a14 a23
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2

p
a13a24 , aij = ai � aj , (2.9)

and K and E denote the complete elliptic integrals of the first and second kind, respectively,

K(�) =

Z 1

0

dtp
(1� t2)(1� �t2)

, E(�) =

Z 1

0
dt

r
1� �t2

1� t2
. (2.10)

The function e�4(x,~a) entering the integrand of the quasi-periods is defined as

e�4(x,~a) ⌘
1

c4 y

⇣
x
2 � s1

2
x+

s2

6

⌘
, (2.11)

where sn ⌘ sn(~a) denotes the n
th elementary symmetric polynomial in the branch points.

The periods and quasi-periods are not independent and satisfy the Legendre relation,

!1 ⌘2 � !2 ⌘1 = �i⇡ . (2.12)
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Computing progress: analytical, numerical
✦ Computer algebra! 
‣ Many dedicated mathematica packages for categorizing loop diagrams (FIRE, 

REDUZE, …) 
‣ Most powerful language, especially for high loops: FORM 

✓ still under active development. Recent: FORCER, code that writes other code 
✦ Monte Carlo technology 
‣ improved parton showers, matching to fixed order 
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J. Vermaseren

IMPORTANT:
As for other areas, for future progress we cannot take the 
new talent entering precision calculations for granted. 

Support, including recognition, for creating/maintaining 
tools and technical innovations will be needed!



SMEFT and top physics
✦ TopFitter 

‣ Confront LHC and Tevatron top data with theory, including operators 
(14) 
✓ pair production (+ vector boson) and single top 

‣ Experimental uncertainties as given 
‣ Theoretical ones: vary scales, and use PDF uncertainties 
‣ NLO effects via SM K-factors 

✦ Top flavour-changing interactions, global analysis 
‣ Top pair and single top contributions 
‣ Include NLO for SM included 
‣ Include also running and mixing for operators 

✦ Recent note on common standards in EFT approach by all involved
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Brown, 
Buckley,Englert,Ferrando,Galler,Miller,
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Durieux,Maltoni,Zhang

Aguilar-Saavedra et al
arXiv:1802.07237

TopFitter David J Miller
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Figure 1: 95% confidence constraints on Wilson coefficients from Run I and Tevatron data. This figure is
taken from Ref. [3], where one can also find a description of these Wilson coefficients combinations.

without need for interpolation. This makes the generation of theory predictions and the subsequent
fitting much faster, and a particle level analysis over the entire space becomes feasible.

We note that neglecting |MHDO|2 could be problematic. Although this is formally of higher
order, if the interference of the operator with the SM is small or zero (e.g. due to colour or helicity
conservation) then this neglected term could provide the leading contribution of new physics. Fur-
thermore, it may provide the leading contribution in some regions of phase space. However, one
could avoid these issues by also calculating |MHDO|2 for each operator (or pair of operators); since
we know how this scales with the Wilson coefficient, these also only need to be caclulated once.

We have tested this linearisation by generating 13TeV NLO parton-level events using Mad-
Graph 5 and showering them with Pythia 8. The tops are decayed using MadSpin [9], while tt̄
and tt̄+ jet are merged and matched with the parton shower using the procedure of Ref. [10], and
include the jet matching scale in our uncertainties. Example distributions can be seen in Figure 2
comparing the previously used method with the new linearised method. On the left we see the
rapidity calculated at the parton level including two non-zero Wilson coefficients simultaneously
(blue) compared with taking one Wilson coefficent non-zero at a time and adding the interferences
together (green). We see an extremely good match. This agreement is also seen for the pT of the
leading jet on the right, now tested at the particle level.

4. A Run II Trial using ATLAS Data

To test our new methodology further we have performed a fit of the SM EFT to the data
presented in the ATLAS analysis of Ref. [11], which presents 13 differential observables in top-pair
production at 13TeV. We chose this particular analysis because it is fully available on HEPData,
has RIVET [12] analyses for its observables, and has full correlations between observables and

3



Dimension-6 operators for single top in t-channel

✦ For single top production in the t-channel, only 3 operators matter! 

✦ Easier to get info on each operator separately  
✦ Effects will be small, hence we should also include QCD corrections to SM 
✦ They will affect the cross section, and differential distributions, in different ways 
‣ used MadGraph5_aMC@NLO
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Effect on amplitudes and cross sections
✦ How do these operators modify single top scattering amplitudes and the cross 

section?  
‣ Amplitude 

‣ Squared amplitude 

‣ Cross sections 

✦ NLO QCD needed in order to make Ci corrections stand out from  �SM(µ,↵s(µ))
<latexit sha1_base64="7NTtm12lbNjsHUxH2aw2jnw4WAM="></latexit>
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SMEFT single top distributions at NLO
✦ Wbj production then W-decay via MadSpin, parton showering with Pythia8 
✦ Top quark pT and η normalized distributions 
‣ Four-fermion operator different shape. QCD corrections at large pT and central 

rapidity notable 
‣ Allow for new physics operators in production and decay (EFT=2)
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Figure 11: The NLO distributions of the reconstructed top transverse momentum (left) and
rapidity (right) for the SM and the three effective operators of interest for the couplings values
of table 2. We quote in the left figure the corresponding inclusive cross section from this table.
The ratio shown in the first inset is defined as the effect of the operator over the SM, the second
inset shows the K-factor.

based on the spin axis of the top. These additional coordinate axes provide the ability to construct
other angles that contain spin information. For brevity, only the angular distributions that show
the most sensitivity to the effective operators will be presented in this section.
The polarisation angle defined in equation (3.4) is one of the spin correlated angles that probes
the production vertex. We use the same reference system as in [18] to construct a new set of
coordinates:

ẑ =
~pj

|~pj |
, ŷ =

~pj ⇥ ~pq

|~pj ⇥ ~pq|
, x̂ = ŷ ⇥ ẑ . (3.10)

The vectors ~pj and ~pq represent the direction of the spectator- and of the initial quark, respec-
tively, both in the top quark rest-frame. Since the initial quark cannot be known with certainty,
the beam axis is used.

We investigate the distributions of the angles between the directions of the top quark decay
products and these new directions. The angle of the charged lepton with respect to the three
axes defined above is affected most by the polarisation of the top [33]. Fig. 13 (left) shows the
NLO distributions for cos ✓xl , where ✓

x
l is the angle between the lepton and direction x̂. Notice

that the dipole operator (OtW ) leads to a different distribution compared to the SM and the
other operators.
In order to probe new interactions in the decay of the top, one can examine the well-known
W�helicity fractions F+, FL and F0 defined in:

1

�

d�

d cos ✓ql
=

3

8

�
1 + cos ✓ql

�2
F+ +

3

8

�
1� cos ✓ql

�2
F� +

3

4
sin2 ✓ql F0, (3.11)
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Next steps in automation in MG5_aMC@NLO
✦ (Not yet NNLO…) 
✦ SMEFT@NLO is fully included  
‣ but renormalization group running and mixing of all the operators still to be done 

✦ MSSM@NLO is under construction. Two example plots [thanks to M. Zaro] 
‣ susy pair production at NLO;  # jets in gluino pair production after decay and ps 
‣
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Imprecise and somewhat uncertain outlook
✦ With only the first few percent of LHC data acquired, experiment will demand high 

theoretical precision 
‣ not just NLO or NNLO, small other effects come into play 

✦ Theory community is meeting the challenge, with quite spectacular progress in the 
last 15 years 

✦ New ideas, methods and talent give reason for optimism 
‣ with sufficient support, recognition and resources
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Theory uncertainties for EWK physics
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