

INFN

New Tools for the Next Generation of Particle Physics and Cosmology Hong Kong, 30 June – 4 July 2019

Prospects of Future Flavour Physics Program at LHC(b)

Marcello Rotondo Frascati National Laboratory On behalf of LHCb Collaboration

M.Rotondo

The flavor physics program

 New Physics evidence may appear in measurement of CP violation, rare decays (or in tree level process with final states not fully explored in the past)

- "High intensity frontier" is sensitive to high mass scale
- Complementary to direct searches at ATLAS & CMS
 - When NP will be discovered, its structure need to be determined: flavor physics!

CKM and Unitarity Triangle

• Up to $O(\lambda^6)$ the CKM matrix is

$$V_{\rm CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 \\ -\lambda + \frac{1}{2}A^2\lambda^5 \left[1 - 2(\bar{\rho} + i\bar{\eta})\right] \\ A\lambda^3 \left[1 - (\bar{\rho} + i\bar{\eta})\right] \end{pmatrix}$$

$$\begin{array}{cc} \lambda & A\lambda^3 \left(\bar{\rho} - i\bar{\eta} \right) \\ 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 (1 + 4A^2) & A\lambda^2 \\ - A\lambda^2 + \frac{1}{2}A\lambda^4 \left[1 - 2(\bar{\rho} + i\bar{\eta}) \right] & 1 - \frac{1}{2}A^2\lambda^4 \end{array} \right)$$

• Many relations from Unitarity

- Measure CKM quantities from loop and tree level processes \rightarrow overconstrain the UT, check the SM

M.Rotondo

Heavy flavour production at LHC

Beauty production at LHC

- All b-hadron species are produced at LHC $B^0, B^+, B_s, B_c, \Lambda_b, \Sigma_b, \ldots$

Analogously: all kind of charmed hadrons

$$N(H_b) = 2 \cdot \sigma(b\overline{b}) \cdot \epsilon(\eta) \cdot f_{H_b} \cdot \mathcal{L}$$

@13 TeV N(B⁰) ≈ 54·10⁹/fb⁻¹ N(B_s) ≈ 13·10⁹/fb⁻¹ N(Λ_b) ≈ 20·10⁹/fb⁻¹

fraction at high energy

 $f(B_s) = 0.101 \pm 0.004$

f(b-baryon) = 0.089 ± 0.012

 $f(B_d) = f(B_u) = 0.405 \pm 0.006$

 $f(B_s)/f(B_d) = 0.250 \pm 0.012$

HFLAV

LHCb flavour physics program

CKM and CP violation

Rare decays

Spectroscopy

Electroweak, QCD, Exotica

Ion physics, fixed target

Inclusive channels, or channels with many neutrals are very difficult in LHCb - complementarity with Belle-II Sin2β, γ, $Φ_s$, $|V_{ub}|/|V_{cb}|$, semileptonics, CPV in B⁰, B_s, D⁰, b-baryons...

 $\begin{array}{l} B_{d,s} \rightarrow \mu\mu, \ B_{d,s} \rightarrow \tau\tau, \ B_{s} \rightarrow \gamma\gamma, \ B_{d,s} \rightarrow \tau\mu, \\ b \rightarrow s\mu^{+}\mu^{-}, \ b \rightarrow se^{+}e^{-}, \ K \rightarrow \mu\mu, \ D \rightarrow \mu\mu \end{array}$

Tetraquarks, pentaquarks, double-heavy hadrons, excited states...

Z, W, top, $H \rightarrow bb$, $H \rightarrow cc$, dark photons, Long-lived particles...

Heavy ions, p-Pb, p-Gas (SMOG) ...

Hadronic decay channels that require PID, or low trigger thresholds are only accessible at LHCb

M.Rotondo

Beauty physics requirements @ LHC

- High statistics: need efficient trigger to select hadronic and leptonic B meson decays σ(bb)/σ(inelastic) ~ O(10⁻³)
- Excellent vertex resolution: resolve a displaced secondary vertex
- Very good mass resolution: reduce the background
- Many channels require efficient particle identification (K/ π)

The 2010-2018 LHCb Apparatus

LHCb: a general purpose spectrometer in the forward direction optimized for highprecision heavy-flavor physics

M.Rotondo

Gordon Research Conference

JINST 3 (2008) S08005

The 2010-2018 LHCb Apparatus

LHCb: a general purpose spectrometer in the forward direction optimized for highprecision heavy-flored in the forward direction optimized for high-

ATLAS and CMS are contributing on flavor physics program with important measurements

Electrons, photons and

 ϵ (electron) ~ 97% e $\rightarrow \pi$ mis-id ~5%

hadrons identification

```
When possible I'll compare LHCb performances with GP experiments
```

EVEL TRIGGER dware: 14→1 MHz trigger efficiencies for both muons and hadrons. Low momentum thresholds.

M.Rotondo

LHCb Detector Operation Run1 & Run2

- LHCb designed to run at lower instantaneous luminosity than ATLAS & CMS
 - pp beams displaced to reduce ${\rm L}$
 - 4 x 10³² cm⁻²s⁻¹
 - Mean number of interactions per bunch crossing ~1

- 1 fb⁻¹ pf pp collisions at 7 TeV
- 2 fb⁻¹ of pp collisions at 8 TeV
- 6 fb⁻¹ of pp collisions at 13 TeV
- Total at end of Run2: 9 fb⁻¹

IJMP A30 (2015) 1530022

M.Rotondo

Imminent LHCb upgrade

- Excellent results from Run-I and Run-II physics data analysis
- In most of the case the precision is limited by statistical uncertainties
 - Hardware trigger limited @1MHz rate
 - The high \textbf{p}_{T} and \textbf{E}_{T} cuts saturate hadronic channels

CERN-LHCC-2011-001

- At higher luminosity the current LHCb could not perform successfully track reconstruction and PID information
 - Larger number of primary vertexes: much higher track multiplicity
 - Higher occupancy in the detector
 - Processing time in the online farm too high

Imminent LHCb upgrade

- Excellent results from Run-I and Run-II physics data analysis
- In most of the case the precision is limited by • statistical uncertainties
 - Hardware trigger limited @1MHz rate •
 - The high p_{τ} and E_{τ} cuts saturate hadronic channels

- At higher luminosity the current LHCb could not perform successfully track reconstruction and PID information
 - Larger number of primary vertexes: much higher track multiplicity
 - Higher occupancy in the detector
 - Processing time in the online farm too high

M.Rotondo

Gordon Research Conference

 $L = 20 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

ramewor

CERN-LHCC-2011-001

The LHCb Upgrade I

M.Rotondo

The LHCb Trigger Evolution

LHCB-TDR-016

HLT and real time calibration

Gordon Research Conference

Fully software

flexible trigger

Post LS2 LHCb Calendar

Post LS2 LHCb Calendar

• Goal: collect > 300 fb^{-1}

Physics case for an Upgrade II arXiv:1808.08865

Opportunities in flavour physics, and beyond, in the HL-LHC era

M.Rotondo

LHCb Upgrade I: Physics Case

arXiv:1808.08865

Observable	Current LHCb	LHCb 2025	Belle II
EW Penguins			
$\overline{R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$	0.1 [274]	0.025	0.036
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 275	0.031	0.032
R_{ϕ},R_{pK},R_{π}	·	0.08,0.06,0.18	_
CKM tests			
$\overline{\gamma}, \text{ with } B^0_s \to D^+_s K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	_
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	$35 \mathrm{\ mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	$39 \mathrm{\ mrad}$	—
$a_{\rm sl}^s$	33×10^{-4} [211]	10×10^{-4}	—
$ V_{ub} / V_{cb} $	6% [201]	3%	1%
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$			
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% 264	34%	_
$\tau_{B^0_{\bullet} \to u^+ u^-}$	22% 264	8%	_
$S_{\mu\mu}$	<u> </u>	_	_
$b \to c \ell^- \bar{\nu_l} \text{ LUV studies}$			
$\overline{R(D^*)}$	0.026 215, 217	0.0072	0.005
$R(J/\psi)$	0.24 220	0.071	_
Charm			
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [613]	1.7×10^{-4}	5.4×10^{-4}
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	3.5×10^{-4}
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	4.6×10^{-4}
$x\sin\phi$ from multibody decays	ئ <u>ب</u>	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi) \ 1.2 \times 10^{-4}$

Belle-II: 1) Unique capability to perform inclusive measurements 2) precise studies with modes involving many neutrals

M.Rotondo

LHCb Upgrade II: Physics Case

arXiv:1808.08865

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$	$0.1 \ [274]$	0.025	0.036	0.007	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 275	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}		0.08,0.06,0.18	_	0.02, 0.02, 0.05	_
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	—
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	_	$4 \mathrm{mrad}$	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	$170 \text{ mrad} [\overline{49}]$	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	$39 \mathrm{\ mrad}$	_	$11 \mathrm{mrad}$	Under study [611]
$a^s_{ m sl}$	33×10^{-4} [211]	10×10^{-4}	_	3×10^{-4}	_
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% 264	34%	_	10%	21% [612]
$\tau_{B^0_s \to \mu^+ \mu^-}$	22% [264]	8%	_	2%	_
$S_{\mu\mu}$	_	-	_	0.2	_
$b \to c \ell^- \bar{\nu_l} { m LUV} { m studies}$					
$\overline{R(D^*)}$	0.026 215 217	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 220	0.071	_	0.02	_
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	$1.7 imes 10^{-4}$	5.4×10^{-4}	3.0×10^{-5}	—
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	4.6×10^{-4}	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays		$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi)~1.2\times10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_

M.Rotondo

Current status on y

- Extracted from tree-level decays
- Exploit interference between amplitudes

LHCb combination:
$$\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$$

World average: $\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$
Utfit summer 2018 $\gamma = (65.8 \pm 2.2)^{\circ}$

• Neutral B-mesons are also used

• Time dependent analysis with $B_s \rightarrow D_s K$

M.Rotondo

Gordon Research Conference

LHCb-CONF-2018-002

The side of the UT: $\Lambda_b \rightarrow p \mu v$

Nature Physics 10(2015) 1038

The B -Triangle: LHCb only inputs

arXiv:1808.08865

CKM fltter

ß

0.8

0.6

0.4

ß

Crucial:

- improvements from Lattice QCD - improvements on external inputs Branching ratios ($\Lambda_c \rightarrow pK\pi$): Bellell, BESIII Strong phases over $D \rightarrow K_s \pi \pi$ Dalitz: **BESIII**

M.Rotondo

Gordon Research Conference

1.0

The B_s-Triangle: Φs

- The interference between the decay and the $B_s\overline{B}_s$ mixing amplitude is governed by the phase β_s
 - Ignoring subleading diagrams: $\Phi_s \sim -2\beta_s$
- Strongly constrained by the CKM unitarity

 $-2\beta_{\rm s}^{SM} = -0.0368^{+0.00096}_{-0.00068}$ rad CKMfitter group $-2\beta_{\rm s}^{SM} = -0.0370 \pm 0.0010$ rad UTfit collaboration

- B_s flavor tagging at production t=0
- Time resolution better than $\sigma_t < 2\pi/\Delta m_s \approx 350 \ fs$

arXiv:1906.08356

M.Rotondo

Current status: Φs with $B_s \rightarrow J/\psi$ K+K-

- $B_s \rightarrow J/\psi \ K^+K^-$ requires a full angular analysis because of the presence of scalar $K^+K^$ contribution
- LHCb added also J/ψ π⁺π⁻, ψ(2S) K⁺K⁻, D_s⁺D_s⁻
 - $\phi_s = -0.041 \pm 0.025 \,\mathrm{rad}\,,$
 - $|\lambda| \ = \ 0.993 \pm 0.010 \, ,$
 - $\Gamma_s = 0.6562 \pm 0.0021 \, \mathrm{ps}^{-1}$
 - $\Delta \Gamma_s = 0.0816 \pm 0.0048 \, \mathrm{ps}^{-1}$
- LHCb, ATLAS and CMS have not analyzed the full Run2 yet

LHCb: arXiv:1906.08356 ATLAS: ATLAS-CONF-2019-009 CMS: 1507.07527

		LHCb					ATLAS	
	Category	$\varepsilon_{ m tag}(\%)$	\mathcal{D}^2	$arepsilon_{ ext{tag}}\mathcal{D}^2(\%)$	Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]
Tagging performances	OS-only	11.35	0.078	0.88 ± 0.04	Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
	SSK-only	42.57	0.032	1.38 ± 0.30	Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
	OGLECK	22.84	0.104	9.47 ± 0.15	Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
	Osassh	$23.64 0.104 2.47 \pm 0.16$	2.47 ± 0.10	Jet	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005	
	Total	77.76	0.061	4.73 ± 0.34	Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01

M.Rotondo

Projections to Post-HL-LHC

ArXiv:1812.07638 **CERN-LPCC-2018-06**

23 50

LHCb

¥ ▼×

300

ATLAS, $B_{c} \rightarrow J/\psi K^{+}K^{-}$ 1000 $\mathbf{r}^{\mathrm{stat}}(\phi_s^{c\overline{c}s}) \; [\mathrm{mrad}]$ Different assumptions on muon p_{τ} thresholds LHCb 100 $L_{int} [\text{fb}^{-1}]$ $\delta_{\phi_s}^{stat}$ [rad] $\delta^{stat}_{\Delta\Gamma_s} \, [\mathrm{ps}^{-1}$ ϵD^2 Period $\sigma(t)$ [ps] N_{sig} 2011 4.9 22700 1.45 0.1 0.25(0.22)0.021 2012 0.013 14.3 73700 1.5 0.09 0.082 10 = $9.7 \cdot 10^{6}$ $B^0_{-} \rightarrow \psi(2S)\phi$ 1.5 HL-LHC $\mu 6\mu 6$ 3000 0.05 (0.0011)(0.004) $B^0_{-} \rightarrow D^-_{-} D^+_{-}$ $5.9 \cdot 10^{6}$ HL-LHC $\mu 10\mu 6$ 3000 1.5 0.04 (0.005)(0.0014) $B^0_s \to J/\psi K^+ K^-$ high mass $1.7 \cdot 10^{6}$ HL-LHC $\mu 10\mu 10$ 3000 1.5 0.04 (0.009)(0.003) $B^0_s \to J/\psi \pi \pi$ $B^0_s \to J/\psi\phi$ B^0_{\circ} all $c\overline{c}s$ ϕ_s central value [CKMFitter Summer 2016] $\Delta \Gamma_{s}[\mathrm{ps}^{-1}]$ 0.15 SM 68% CL contours Integrated Luminosity $[fb^{-1}]$ $(\Delta \log \mathcal{L} = 1.15)$ 0.095 CMS 3 ab LHCb: also with penguin dominated $B_{s} \rightarrow$ LHCb 300 fb $\Phi\Phi$, K*K*... processes 0.085 ÁTLAS 3 ab $^{-1}$ Lack of PID limits the CMS and ATLAS 0.075 Current Exp. Constraint measurements of fully hadronic final states **Combined Projection** 0.065 Usage of the tracking in the trigger selection is under study for $B_{s} \rightarrow \Phi \Phi$ -0.050 0.000 0.050 $\phi_{e}^{c\bar{c}s}$ [rad]

Projections to Post-HL-LHC

ArXiv:1812.07638 CERN-LPCC-2018-06

ATLAS, $B_s \rightarrow J/\psi \ K^+K^-$

Different assumptions on muon p_{τ} thresholds

Period	$L_{int} [\text{fb}^{-1}]$	N_{sig}	ϵD^2	$\sigma\left(t ight)\left[\mathrm{ps} ight]$	$\delta_{\phi_s}^{stat}$ [rad]	$\delta^{stat}_{\Delta\Gamma_s} [\mathrm{ps}^{-1}]$	
2011	4.9	22700	1.45	0.1	0.25 (0.22)	0.021	
2012	14.3	73700	1.5	0.09	0.082	0.013	
HL-LHC $\mu 6\mu 6$	3000	$9.7 \cdot 10^6$	1.5	0.05	(0.004)	(0.0011)	
HL-LHC μ10μ6	3000	$5.9\cdot 10^6$	1.5	0.04	(0.005)	(0.0014)	
HL-LHC $\mu 10\mu 10$	3000	$1.7 \cdot 10^6$	1.5	0.04	(0.009)	(0.003)	

- LHCb: also with penguin dominated B_s → ΦΦ, K*K*... processes
- Lack of PID limits the CMS and ATLAS
 measurements of fully hadronic final states
 - Usage of the tracking in the trigger selection is under study for $B_s \rightarrow \Phi \Phi$

M.Rotondo

Current status on $B \rightarrow K^* \mu \mu$ anomaly

- b→sµµ transitions are sensitive to new heavy particle contributions
- Many observables accessible from full angular analysis
 - **P5':** one of the observable free of form-factor contribution
 - possible pollution due to intrinsic-charm is under scrutiny

- Global significance of the difference with SM at 3.4sigma: Belle includes both electrons and muons
- Measurements statistically limited
 - With larger statistics, hadronic pollutions can be constrained on data
- At LHC b→sµµ in other b-hadron decays have been studied
 - Few anomalies in ΔBF/Δq² a in similar q² window

M.Rotondo

Prospects on $B \rightarrow K^* \mu \mu$

- With higher statistics: full angular analysis in finer binning
- Ongoing physics reach studies from LHCb, ALTAS and CMS for Phase-II

- Other channels of the $b \rightarrow s \mu \mu$ family accessible
- Proof of angular analysis in B→K*ee in LHCb done
 - Competition/synergy with Belle-II on electron modes

M.Rotondo

R observables for $B \rightarrow K(*)\mu\mu$ and $B \rightarrow K(*)ee$

- Very clean probes of New Physics
 - New interaction may render the coupling to muons and electrons non-universal
 - Hadronic uncertainties cancel in the ratio
 - Residual QED corrections at % level

$$R_{K^{*0}} = \frac{BR(B^0 \to K^{*0}\mu^+\mu^-)}{BR(B^0 \to K^{*0}e^+e^-)}$$

Analogous with K, Phi, Lambda, pK...

 $B^+
ightarrow K^+ \ell^+ \ell^-$

 $B^0
ightarrow K^{*0} \ell^+ \ell^-$

LHCb: full dataset not analyzed yet

M.Rotondo

$B \rightarrow K(*)\mu\mu/B \rightarrow K(*)ee$

PRL 122(2019) 191801

$B \rightarrow K(*)\mu\mu/B \rightarrow K(*)ee: prospects$

CERN-LHCC-2017-003

- Measure a double-ratio to cancel experimental systematics
- Photon bremsstrahlung is accounted for

- $R_{K} = \frac{\mathcal{B}\left(B^{+} \to K^{+}\mu^{+}\mu^{-}\right)}{\mathcal{B}\left(B^{+} \to K^{+}J/\psi\left(\to\mu^{+}\mu^{-}\right)\right)} / \frac{\mathcal{B}\left(B^{+} \to K^{+}e^{+}e^{-}\right)}{\mathcal{B}\left(B^{+} \to K^{+}J/\psi\left(\to e^{+}e^{-}\right)\right)}$
 - Assuming constant ECAL performance
 - Systematics from limited modeling of bremsstrahlung
 - Reduced material before the magnet would help (see next slides)

Expected $B \rightarrow Xe^+e^-$ yields and R(X) precision for q^2 between $1.1 - 6.0 \text{ GeV}^2$

Yield	Run 1 result	$9{\rm fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300\mathrm{fb}^{-1}$
$B^+ \to K^+ e^+ e^-$	254 ± 29 [5]	1 1 2 0	3 300	7 500	46 000
$B^0 \to K^{*0} e^+ e^-$	111 ± 14 [6]	490	1 400	3 300	20000
$B_s^0 \to \phi e^+ e^-$	-	80	230	530	3 300
$\Lambda_b^0 \to p K e^+ e^-$	-	120	360	820	5 000
$B^+ \rightarrow \pi^+ e^+ e^-$	-	20	70	150	900
R_X precision	Run 1 result	$9{ m fb}^{-1}$	$23{\rm fb}^{-1}$	$50{ m fb}^{-1}$	$300\mathrm{fb}^{-1}$
R_K	$0.745 \pm 0.090 \pm 0.036$ [5]	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05$ [6]	0.052	0.031	0.020	0.008
R_{ϕ}	-	0.130	0.076	0.050	0.020
R_{pK}	-	0.105	0.061	0.041	0.016
R_{π}	_	0.302	0.176	0.117	0.047

M.Rotondo

$B_{s} \rightarrow \mu\mu$ and $B_{d} \rightarrow \mu\mu$

- Bs $\rightarrow \mu\mu$ is the cleanest exclusive b \rightarrow sµµ process
- All QCD effects embedded in the decay constant f_{Bs} = 230.7(1.3) MeV

- LHCb: first observation from a single experiment
- All LHC experiments have contributed to establish the signal
- Still need to fully exploit the full dataset available
- "Official" combination of the results not available yet

M.Rotondo

Gordon Research Conference

J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P Stangl and M. Straub, arXiv:1903.10434

$B_{s} \rightarrow \mu\mu$ and $B_{d} \rightarrow \mu\mu$: prospects

The performances for these channels at HL-LHC are determined by low p_{τ} di-muon triggers and the mass resolution

(13 TeV)

ArXiv:1812.07638

- Improved tracking detectors will • result in improved B_d/B_s separation
- CMS studied possibility of lifetime • measurement
- At LHCb, improved tracking and a muon shielding will ensure non degraded performances with increasing pileup

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \quad \mathcal{B}(B^0 \to \mu^+ \mu^-)$$

ation	Experiment	Scenario	stat + syst %	stat + syst $\%$			
	LHCb	$23 \mathrm{fb}^{-1}$	8.2	33			
ime	LHCb	$300\mathrm{fb}^{-1}$	4.4	9.4			
	CMS	$300\mathrm{fb}^{-1}$	12	46			
nd a	CMS	3 ab^{-1}	7	16			
n	ATLAS	Run 2	22.7	135			
	ATLAS	3 ab^{-1} Conservative	15.1	51			
	ATLAS	3 ab^{-1} Intermediate	12.9	29			
	ATLAS	3 ab^{-1} High-yield	12.6	26			
Gordon Research Conference							

M.Rotondo

Discovery of CP violation in charm

PRL122,21803(2019)

 Measured a non-zero time integrated CP-violation asymmetry In Charm

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}$$

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi + \pi^-) = (15.4 \pm 2.9) \times 10^{-4}$$

A_{CP} primary sensitive to direct CPV

- Result is consistent with SM prediction (10⁻⁴-10⁻³)
- Long range strong interaction prevents more precise predictions

Discovery of CP violation in charm

PRL122,21803(2019)

 Measured a non-zero time integrated CP-violation asymmetry In Charm

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}$$

ΔA_{CP} primary sensitive to direct CPV

• Result is consistent with SM prediction (10⁻⁴-10⁻³)

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi + \pi^-) = (15.4 \pm 2.9) \times 10^{-4}$

Long range strong interaction prevents more precise predictions

M.Rotondo

LHCb Upgrade II detector

- Aiming at L=2x10³⁴ cm⁻²s⁻¹, about 50 visible interactions per bunch crossing
- Tracking: 1500-3500 charged particles/bunch crossing
- PID: need to cope with high occupancy, upgrade the coverage at low ~10 GeV
- ECAL: sustain very high radiation dose
 - Energy resolution at $10\%/\sqrt{E+1\%}$, reduce Moliere radius
- TDAQ: big data-processing challenge!

Detector must be faster, harder, finer, smarter

LHCb Upgrade II detector

from subdetectors

Vertex

Locator

UT

micro

strips

RICHI

Phase-II Upgrade

RICH1

CERN-LHCC-2017-003 Crucial to have timing information **5D ECAL** Outer Muon Spatial res., tracker µRwell Magnet Timing, SciFi & side Energy **CMOS** stations Maps Tungsten M5 M4 ECAL M3 Magnet & Neutron M2 SciFi TORCH Magnet Stations Shieldina RICH2 **Improve** granularity &Silicon Tracker **Better radiation hardness Better** coverage for low momentum tracking Use timing to distinguish

15m

vertices (high-pileup)

Keep triggerless readout

VELO

pixel with

timing

TORCH

Timing/PID

RICH2

Tracking and vertexing

- Fast timing detectors for 4D track reconstruction
 - Suppress ghost tracks and improve PV: time resolution < 100ps
 - Increase granularity: pixel size < 55µm

• Reduce material to improve resolution

- Si thickness and VELO in vacuum
- Important for electron bremsstrahlung

B-hadron mismatched to the wrong PV

M.Rotondo

New detector for low momentum tracks

 Magnet side stations could be added to improve momentum resolution of tracks upstream of the magnet

CERN-LHCC-2017-003

- Increase the charm-tagging by 40%
- Improvements of Same-side taggers
- General efficiency improvement for multi-body hadron decays and excited hadrons reconstruction

M.Rotondo

CERN-LHCC-2017-003

Calorimeter ECAL

- Inner region of the ECAL most affected by radiation
 - Degradation in performance would be seen in Run 4
- Inner modules need to be replaced during LS3 (Upgrade lb)
 - Original plan was to replace with identical spare modules
- Alternatively: replace with newer technology and use as test for a new ECAL for Upgrade II
 - Reduce the cell size to 2x2cm² in the inner region
 - Different technology under study:
 - Timing will be important
 - Add timing in a separate detector or ECAL itself ?

Occupancies in different ECAL regions

Lot of interesting physics would benefit from an improved ECAL

 $\begin{array}{l} D^{0} \rightarrow e\mu \\ D^{+} \rightarrow \pi^{+} \pi^{0} (\rightarrow \gamma e^{+} e^{-}) \\ D^{0} \rightarrow \Phi \gamma, \ K^{*} \gamma, \ \rho / \omega \gamma \end{array}$

 $\begin{array}{l} B{\rightarrow}D^{**}({\rightarrow}D^0\pi^0X)\mu\nu\\ B{\rightarrow}De\nu\ vs.\ B{\rightarrow}D\mu\nu \end{array}$

Conclusion

- Successful Run1 and Run2: 3+6 fb^{-1:} Many analysis ongoing
- Upgrade Phase I: installation ongoing
 - 10 times more data (20 times more hadronic events)
 - Complementarity with Belle
 - Synergy between LHCb, ATLAS and CMS on some important channels
- Upgrade Phase II: integrate overall sample larger than 300fb⁻¹
 - Several theoretically-clean observables can be drastically improved
 - New Physics scale probed will be highly increased
 - Widen the set of observables under study to search and characterize new physics (semitauonic, b→sll,...)
 - Many technological challenges, not all the answers yet:
 - You are welcome to join the enterprise!
- Strong program beyond flavour exploiting unique acceptance
 - Spectroscopy, electroweak, nuclear physics,

Backup

Beauty physics requirements @ LHC

- High statistics: need efficient trigger to select hadronic and leptonic B meson decays σ(bb)/σ(inelastic) ~ O(10⁻³)
- Excellent vertex resolution: resolve a displaced secondary vertex
- Very good mass resolution: reduce the background
- Many channels require efficient particle identification (K/ π)

Conclusions II

- The LHCb detector after 2030, compared with the present detector, should have
 - Much higher radiation hardness
 - Higher granularity to cope with increased multiplicity
 - Timing capability to cope with pileup up to 50 collisions/bunch crossing

