

Prospects of Charged Lepton Flavor Experiments

Satoshi Mihara KEK/J-PARC/Sokendai

Outline

Introduction

- CLFV physics with DC muon beam
- CLFV physics with pulsed muon beam
- CLFV physics with tau leptons
- CLFV physics at collider experiments
- Prospects and summary

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10⁻⁵⁰
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM
- Origin of neutrino mass

- PC beam for coincidence experiments
 - Decay of pions stopping on the material surface. Muons are polarized
 - $\mu \rightarrow ex$, $\mu \rightarrow eee$

- Pulse beam for non-coincidence experiments
 - Pion decay in flight
 - μ -e conversion

Unravelling the mysteries of matter, life and the universe.

Muon cLFV experiments

MEG II

Mu₃e

- µ→ex
 - MEG Br($\mu \rightarrow e_x$) < 4.2x10⁻¹³

- SINDRUM BR(μ →eee) < 1.0x1 0⁻¹²
- μ -e conversion
 - SINDRUM II R(μ -e: Au) < 7x1 0⁻¹³

PSI Ring Cyclotron 590MeV, 1.4MW

J-PARC 8GeV, 3.2-56kW

CLFV Physics with DC muon beam

MEG II: $\mu^* \rightarrow e^*x$ search

• MEG achieved $4.2 \times 10^{-13} @ 90\%$ C.L. Liquid xenon photon detector (LXe) COBRA Background was dominated by superconducting magnet Accidental event overlaps • MEG II aims at twice better resolutions than MEG in all components e+ • Pouble the muon beam rate • 7x10⁷ muon stops/s Pixelated timing counter (pTC) • New detector to tag the radiative Muon stopping target muon decay event Cylindrical drift chamber (CDCH) Radiative decay counter New calibration method (RDC)

Target Sensitivity : 6x10⁻¹⁴ in 3 years running

Background

Dominant

- Based on experience in MEG I
 - Liquid Xe PD, Positron DC, Timing Counter

Mu3e: $\mu \rightarrow$ eee Search

- Another channel sensitive to cLFV with DC muon beam
 - 1.0x1 0⁻¹² (90% C.L.) by SINDRUM
 - Goal : 10⁻¹⁶ in 2 steps
- Measure all electron tracks with extreme precision
- Background source
 - μ⁺→e⁺e⁺e⁻ννν
 - Accidental overlap
- Beamline is shared with MEG II

Ultra-thin silicon pixel detector 1 per mil radiation length/layer

A. Schöning, CLFV19

Example the mysteries of matter, life and the universe. Reference of the example of the example

Mu3e Status

- Moving from R&D phase to construction phase
 - Ready for production in 2019
 - Detector construction in 2020
- Commissioning start in 2021

To be delivered in summer 2019

j-PARC Future prospects of High-intensity DC muon beam

- PSI HiMB project
 - Development of high-intensity beam by modification of existing target (TgM) and beam lines \rightarrow goal of 10¹⁰ surface-µ⁺/s
- New Target M Station (TgM) with 20mm thick graphite slab at
- Split capture solenoid channel close to target
 - One side: particle physics (high-intensity)
 - Other side: materials science (high-intensity, high-polarization)
- Normal conducting solenoids Front-end: radiation hard Copy of existing μ E4 solenoids
- First (simple) beam optics shows that $O(10^{10}) \mu^{+}/s$ can be transported

$\begin{aligned} F_{e} = m_{\mu} - B_{\mu} - N_{recoil} \\ = 104.9 MeV \end{aligned}$

Mu-e conversion

- Atomic capture of $\mu^{\text{-}}$

- μ⁻→e⁻ν̄_eν_µ
- electron gets recoil energy
- Capture by nucleus $\mu^{-+}(A,Z) \rightarrow \nu_{\mu}^{+}(A,Z^{-1})$
 - resultant nucleus is different
- $\tau_{\mu}^{Q} < \tau_{\mu}^{free} (\tau_{\mu}^{Al} = 860 \text{ nsec})$
- μ -e conversion $\mu^{-+(A,Z) \rightarrow e^{-+(A,Z)}}$
- $E_{\mu e}$ (AI) ~ m_{μ} - B_{μ} - E_{rec} =104.97MeV

– B_{μ} : binding energy of the 1s muonic atom

µ-e Conversion Signal and Background

- Electron from the muon stopping target with a characteristic energy with a delayed timing
- Background
 - Decay in Orbit Electron
 - Radiative muon capture
 - Cosmic-ray
 - Anti-protons
 - ullet and others

Tiny leakage of protons in between consecutive pulses can cause a background through Beam Pion Capture process:

$$\pi^{-+}(A,Z) \rightarrow (A,Z^{-}1)^* \rightarrow \gamma^{+}(A,Z^{-}1)$$

 $\gamma \rightarrow e^+$

Number of protons between pulses

e⁻

Number of protons in a pulse

New Tools for the Next Generation of Particle Physics and Cosmology

Rext=

MELC Proposal

- Pion production in magnetic field
- Pion/muon collection using gradient magnetic field
- Beam transport & momentum selection with curved solenoid magnets

ISSN 1063-7788, Physics of Atomic Nuclei, 2010, Vol. 73, No. 12, pp. 2012–2016. © Pleiades Publishing, Ltd., 2010. Original Russian Text © R.M. Djilkibaev, V.M. Lobashev, 2010, published in Yadernaya Fizika, 2010, Vol. 73, No. 12, pp. 2067–2071

> ELEMENTARY PARTICLES AND FIELDS Experiment

Search for Lepton-Flavor-Violating Rare Muon Processes

R. M. Djilkibaev* and V. M. Lobashev**

Institute for Nuclear Research, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 Russia Received March 26, 2010; in final form, July 12, 2010

Z

- Momentum and charge separation
 - Same scheme used in COMET Phase-II electron spectrometer

COMET at J-PARC

COMET

- Target S.E.S. 2.6×10⁻¹⁷
- BGeV Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulse-pulse width
 - \bullet bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons
- COMET decided to take a staging approach to realize this. The collaboration is making an effort to start physics DAQ as early as possible under this.
 - Phase-I 8GeV-3.2kW, < 10⁻¹⁴
 - Phase-II 8GeV-56kW, < 10⁻¹⁶

Status of COMET Phase I

- Facility
 - Proton beam line & SC magnet system
- Detectors
 - Phase-I Physics Detector (CDC & TC)
 - Phase-I Beam measurement Detector (Straw tracker and LYSO Ecal)

Final assembly design

- COMET requires MR operation at 8GeV (instead of 30GeV for HD hall experiments and T2K)
- Proton beam extracted from MR without destroying the bunch structure to generate pulsed-muon beam with a suitable pulse timing
- Proton beam extinction factor measurement using secondary beam in 2018
 - 1-2x10⁻¹⁰ extinction factor has already been achieved by masking K4 rear bunch

Mu2e at FNAL

• A search for Charged Lepton Flavor Violation: $\mu N \rightarrow e N$

- Expected sensitivity of 6x10-17
 Ø 90% CL, x10,000 better than SINDRUM-II
- Probes effective new physics mass scales up to 10⁴ TeV/c²
- Discovery sensitivity to broad swath of NP parameter space

Mu2e

- Mu2e makes use of existing infrastructure at Fermilab
- Mu2e uses 8 kW of protons
 - From the Booster (8 GeV) & Re-bunched in the Recycler
 - Slow-spill from Delivery Ring
 - Accumulator/Debuncher for Tevatron anti-protons
 - Revolution period 1695 ns

• Mu2e will run simultaneously with NOvA and SBN Tools for the Next Generation of Particle Physics and Cosmology

Mu2e Status

- Installation of beamline magnets nearly complete
- TS components being devolved to FNAL
- PS model coil successfully completed
- Cryogenics in preparation

Mu2e Detectors

Prototype DRA® board

connections

Digitization Readout And

ose-up of pre-amp

J-PARC

Straw-tube tracker

Csl Calorimeter

Proto	type cryst	als for testi
Amerys C0036	S-G C0066	SIC C0073
Amerys C0034	S-G C0065	SIC C0072
Amerys C0032	S-G C0063	SIC C0071
Amerys C0030	S-G C0062	SIC C0070
Amcrys C0027	S-G C0060	SIC C0068
Amcrys C0026	S-G C0058	SIC C0043
Amerys C0025	S-G C0057	SIC C0042
Amerys C0023	S-G C0051	SIC C0041
Amerys C0019	S-G C0049	SIC C0040
Amerys C0015	S-G C0046	SIC C0038
Amerys C0013	S-G C0045	SIC C0037

Fully

fiducia

Electron Energy (MeV)

100

Csl crystal calorimeter

 Important for particle ID

ОG

0.01

- ~7% energy resolution @ 105 MeV
- <200 ps timing resolution

Escape

thru center

of Tracker

50

- 2 disks oriented transverse to beam line, 70 cm apart
- Readout : 2 photo-sensors per crystal (MPPCs)

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Input to Eur. Particle Physics Strategy "Charged Lepton Flavour Violation using Intense Muon Beams at Future Facilities"

Once the signal is found...

• MEG II

- Muon bram is polarized (P_{μ} =-0.85)
- Gamma angular distribution
- Mu3e
 - Invariant mass distribution $m_1(e^+e^-)$ vs. $m_2(e^+e^-)$

MEG, EPJ 2016 76:223

Example the signal is found...

- Comparison of signal rates of $\mu \to ex$, $\mu \to eee$, and μe conversion will clarify the physics behind cLFV reactions
- Even discovery only in $\mu\text{-}e$ conversion
 - Different target material contains different quark contents
 - May be possible to see the target dependence on the mu-e conversion rate
 - Discriminate the principal interaction of the mu-e conversion?
 - Vector type, Dipole type, or Scaler type?
- Possible taget
 - PeeMe: C (& Si)
 - COMET & Mu2e: Al (& Ti in future? & Pb in far future ??)

KEK Unavelling the universe. Multiple and the universe. M

- 2 independent analyses for wp and 6 for wa
- Run 2 data collection is ending early July

L. Roberts CLFV 2019

New Tools for the Next Generation of Particle Physics and Cosmology

"Muons accelerated in Japan" July 2018, CERN Courier

Summary

- Strong physics motivation to search for muon CLFV reactions
- Future plans of muon CLFV experiments
 - MEG II & Mu3e
 - COMET & Mu2e

 Important to achieve similar sensitivities in all channels to clarify the physics behind signal (even in case of exclusion)

More physics results expected in coming years