The ECAL in the DUNE ND MPD.

TPC Mini Workshop

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Eldwan Brianne / Lorenz Emberger Frank Simon / Felix Sefkow / Marcel Stanitzki CERN, 12th July 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The Near Detector ECAL. The goals

- The main **goals** of the ND ECAL surrounding the HPgTPC
 - Help in identifying neutral pions metric reject background π⁰ s in v_e interactions
 - Help in rejecting backgrounds / Provide an accurate timestamp of the event
 - Hadron containment, improve the LAr acceptance (HPgTPC + ECAL)
 - Help in **PID** with calorimetric variables / timing techniques
 - Separation mu/pi
 - Separation positron/proton > 1 GeV is impossible with dE/dx
 - As a bonus
 - Possibly provide a handle on neutron identification and energy reconstruction
- The ND ECAL design needs to take into account all these at the maximum

2

The ECAL concept. **Possible geometry design**

- Global layout driven by the HPgTPC size \bullet
 - Radius ~2.7 m, Length ~5.5 m \bullet
- Need to fit the cylindrical geometry of the HP vessel and planar \bullet geometry of a granular calorimeter is octagonal geometry
- Overall dimensions: Octogon side length ~ 2-3 m \bullet
 - Barrel surface ~ 150 m² \bullet
 - Endcap surface ~ 70 m²
- Due to the nature of the experiment **pranularity/depth/resolution does** \bullet not need to be the same everywhere
 - Two regions: downstream and upstream
- Possible variable longitudinal segmentation \bullet
 - Thin layers in front (good EM res), thick layer in the back for \bullet containment

Performance goals. Try to be based on physics

- Electromagnetic resolution ~ 5-10% / $\sqrt{E[GeV]}$ \bullet
 - Drives the sampling structure design Thin absorbers \bullet
- π^0 reconstruction \bullet
 - Shower separation, position and angular resolution me motivates a \bullet highly granular calorimeter
- Potential game changer I Neutron identification and energy ulletreconstruction (still needs to be well established)
 - Drives timing resolution to 100 ps level \bullet

Technological choices. **Based on acquired experience in CALICE**

- ullet

 - both sides

Page 5

More details here: https://indico.fnal.gov/event/20425/session/5/contribution/10/material/slides/0.pdf

Technological choices. Based on acquir

- Mix of high granul: \bullet
 - HG -> scintillat ullet
 - LG -> crossed

intillator files

SMD SiPM

pling e

Well established technology -> full prototype with ~22k channels

C 1

Page 6

Current design overview. Current status, not what will be built

Active elements:

- high granularity: 25 x 25 mm² tiles, 5 mm thick
- low granularity: 40 mm wide, 5 mm thick bars over full module length, crossed in alternating layers

ZIII. high granularity layers: tiles

"Downstream" segment

- Downstream layout [3 downstream] octagon segments]:
 - 80 layers, first 8 high granularity
- Upstream layout [5 side and upstream] segments, endcaps]:
 - 60 layers, first 6 high granularity

Optimisation goals. Study of several designs

- <u>Goals</u>: \bullet
 - **Cost** drivers: Granularity, absorber material/thickness, number of layers (size)
 - Main design driver **calorimeter energy resolution**, **angular resolution**, **neutron detection**... \bullet
- Optimize by looking at the influence of \bullet
 - Granularity \bullet
 - **Absorber thickness** \bullet
 - **Scintillator thickness**
 - Pressure vessel \bullet

Simulation studies. **Full comparison**

- A lot of models have been compared! (~12 models) \bullet
- To take away \bullet
 - Angular resolution dominated by front layers \rightarrow granularity in the back layers does not matter much strips can be used
 - Thinner absorber with *small Molière radius* in the front is preferred for angular resolution
 - Shower containment is important for high energies \bullet me more layers or thicker absorber in the back
 - Thicker scintillator in the front helps in the angular \bullet resolution
 - Pressure vessel thickness needs to be kept below 1 X_0 to keep energy resolution below $6\%/\sqrt{E} \implies ECAL$ can be put outside the PV

Simulation studies. Influence of the pressure vessel

- Look at the influence of the **pressure vessel** \bullet
 - Case if the ECAL is fully outside the PV \rightarrow easier ${\bullet}$ from the engineering side
- Different thicknesses \bullet
 - **0.5**, **1** and **2** X_0 of steel lacksquare
- Until when the pressure vessel becomes a significant \bullet problem?
- Angular resolution get slightly affected over 1X₀ \bullet
- Energy resolution **gets heavily affected pressure** \bullet vessel should stay below 1 X₀ to keep energy resolution below 6% / Sqrt(E)

0.2

0.4

0.6

0.8

1.6

1.2

Neutron reconstruction. **ToF technique**

- Typical proton recoil energies: few MeVs however \bullet depends on the simulation model used
- **First interaction** missed **travel** distance underestimated
- **Scattered neutron** is slower **ToF** is over-estimating the \bullet initial neutron kinetic energy
- In the ECAL case: \bullet
 - Due to passive absorber me more chance to have \bullet scattered neutrons
 - Expect low left tail in the energy reconstruction \bullet
- Sensitive parameters: \bullet
 - Amount of H is thickness active material \bullet
 - **Absorber thickness** / material Z

Neutron reconstruction. **Baseline design**

Configuration

- 2 mm Cu + 5 mm Sc (80 layers) •
- Particle gun between 20 and 900 MeV \bullet
- Assumes 250 ps time resolution \bullet
- Requirements: \bullet
 - First hit in time with **at least 3 MeV** of deposited energy ullet

Observations

- Overall efficiency of above **50-60%** ullet
 - Mostly **dominated** by rescatters ullet

Page 12

Neutron reconstruction. **Baseline design**

Configuration

- 2 mm Cu + 5 mm Sc (80 layers) \bullet
- Particle gun between 20 and 900 MeV \bullet
- Assumes 250 ps time resolution \bullet
- Requirements: \bullet
 - First hit in time with **at least 3 MeV** of deposited energy \bullet

Observations

- Overall efficiency of above **50-60%**
 - Mostly **dominated** by rescatters ullet
- Rescatters degrade the energy resolution and introduce a \bullet bias! - can be limited by cutting on the layer

Improvements

- Still needs to be established in a real environment \bullet
- Scintillator doping / impact on background lacksquare

Neutral pion reconstruction. **Setup and method**

- Shooting π^0 s in the z direction between 0 and the TPC \bullet radius at intervals of 15 cm (x position fixed)
- **Simple Method** (no MC info used): \bullet
 - Take the two most energetic clusters (some case have ulletmore than two clusters)
 - Take the direction from the cluster main axis and \bullet calculate the PCA between the two cluster axis
 - Calculate the angle between the two cluster axis and \bullet reconstruct the π^0 mass
 - Calculate the 3D distance between the true vertex and \bullet the geometrical determined one
 - χ^2 minimization can be done after using the energy and ulletgeometrical information combined (not yet included)
- Work in progress \bullet

- 14

Neutral pion reconstruction. Work in progress

- Case shown: 400 MeV neutral pion \bullet
- Look at the distance to the true vertex and \bullet reconstructed invariant mass as function of the vertex position
- π^0 s reconstructed between 100-150 MeV \rightarrow clustering lacksquareeffect
- Distance to the truth vertex around 150 200 cm \bullet mostly the z-coordinate is badly reconstructed
- Factor ~x5 worse than more complete studies \bullet
 - Not yet using the χ^2 minimization \rightarrow *important for* ulletthe position resolution
 - Clustering not optimized ullet

15

Neutral pion reconstruction. Work in progress

- Photon energy resolution and angular resolution very similar to \bullet previous studies is similar results as previous study should be achievable
- Clustering degrades significantly the reconstructed π^0 mass \bullet was avoided before by truth clustering
- Possible improvements: \bullet
 - Better clustering algorithm \bullet
 - χ^2 minimisation using the mass information in order to \bullet improve the vertex reconstruction (previous studies showed a distance around 20-30 cm depending on the distance from the ECAL)
 - The use of timing/additional tracks could help in constraining \bullet the angle between the clusters and the location of the vertex
 - Improve the method by using the most energetic photon \bullet direction and timing to give a better estimate of the vertex

Previous study at MPP

Particle identification. Work in progress

- ECAL needs to be complementary to the HPgTPC
- Example
 - Separation muon / pion
 - Separation proton / positron around 1 GeV
- Use of shower shape variables: shower start, number of hits, shower size ... combined with TMVA techniques (Likelihood, BDT...)
- Alternatively, time of flight technique could be used combined with dE/dx

Software: ECAL Reconstruction. Work in progress

- Developed in parallel to the HPgTPC reconstruction (see Tom's \bullet talk) and integrated into GArSoft
- SiPM digitisation Saturation + SiPM binomial smearing as \bullet used in CALICE
- Hit reconstruction
 - Tiles straight forward (threshold check still need proper \bullet electronic response)
 - Cross-strips lacksquare
 - strip-splitting algorithm (1405.4456v2) in development \bullet
 - → use timing to reconstruct hit along the strip (250 ps ~ ullet7 cm)
- Clustering algorithm \bullet
 - Simple NN algorithm \bullet
- Integration issues \bullet
 - Unified software framework for the ND complex is task force \bullet starting

Software: To do list. **Open-ended list**

- ECAL specific \bullet
 - More realistic electronic response ullet
 - Improvement of clustering and possible Pandora integration ullet
 - SSA to be finalised ullet
 - Association TPC tracks to ECAL clusters \bullet
 - Implement particle identification / π^0 reconstruction / neutron \bullet reconstruction techniques
 - Full energy reconstruction (only visible energy so far) ullet
- General \bullet
 - Full event reconstruction \bullet
- Ideas and help are welcomed! ullet

Conclusions and Outlook Some work and more to come...

- An ECAL design is on its way \bullet
- Detailed optimisation studies are starting \bullet
 - \bullet parameters
 - **Best achieved**: $\sim 5\%/\sqrt{E} + 1\% \sim 3.5^{\circ}/\sqrt{E} + 2^{\circ}$
 - The ECAL may have potential in neutron energy reconstruction with ToF ullet
 - Energy resolution below 20% for a large range of neutron KE however bias in the reconstruction ullet
 - Improvements possible \bullet
 - **Neutral pion reconstruction/Particle identification** is work in progress, still place for improvements lacksquare
- Software: \bullet
 - Much progress been done in the last few months \bullet
 - Integration into a common ND framework started \bullet
 - Long to do list lacksquare
 - Need to identify few key benchmark analyses \bullet

EM energy resolution and angular resolution investigated for several models to understand the impact of each

Simulation studies. Influence of the absorber thickness

- Change of the **absorber thickness** \bullet
 - 2 mm Cu for HG layers
 - 2/4 mm Cu for LG layers
- Energy resolution mostly affected by
 - change in ratio scintillator thickness / absorber thickness **sampling fraction**
 - Leakage
- Angular resolution is slightly affected depending on the \bullet configuration
 - Mainly dominated by front layers
 - \rightarrow thinner absorber in the front layers \implies shower evolves deeper in the calorimeter, gives better lever arm on the direction

Page 22

Simulation studies. Influence of the scintillator thickness

- Change in **scintillator thickness** for the front layers \bullet
 - 3, 5 and 10 mm
- Overall, not much change except at low energies \bullet
- Change most significant for 3 mm tiles especially at low energies is effect of the threshold
- Better angular resolution for thicker tiles \bullet
 - \rightarrow Mostly due to the PCA that favours large energy deposits

Page 23

Simulation studies. Influence of the absorber thickness

- Change of the absorber thickness \bullet
 - 2 mm Cu for HG layers \bullet
 - 2/4 mm Cu for LG layers \bullet

Simulation studies. Influence of the scintillator thickness

- Change in scintillator thickness for the front layers \bullet
 - 3, 5 and 10 mm lacksquare
- Overall, not much change except at low energies \bullet

25 Page

Simulation studies. Influence of the granularity

- Change of the granularity of the back layers \bullet
- Using strips with WLS crossed perpendicularly \bullet between layers

Simulation studies. Influence of the granularity

- Change of the granularity of the back layers \bullet
- Using strips with WLS crossed perpendicularly \bullet between layers
- Slight improvement of the energy resolution ~5-10% \bullet \rightarrow more layers \rightarrow less leakage
- Angular resolution not much affected (~2%) by using \bullet strips instead of tiles inviable option to reduce channel count!

Motivation. **Pushing the limits**

- **Neutron production** for anti/neutrinos on Ar target is highly uncertain \bullet
 - Neutron energy is a source of *neutrino energy mis-reconstruction* \bullet
- Neutron energy measurement: \bullet
 - **Time of flight** (ToF) by measuring the time between the production vertex and the located hit \bullet
 - Technique demonstrated in simulation with the 3DST (full scintillator-based detector)
 - Technique can be used with the ECAL \bullet
 - Need for *precise time measurement* (sub-ns)
 - Advantage Implever arm with the ECAL (~3 m from TPC center)
 - **Challenge** heed to identify hits that belong to a neutron!

Parameters for this preliminary study. Setup

- Single neutron gun placed at ~3m or ~1m from the ECAL front face \bullet
- Comparison of 3 ECAL models (third one in backup) \bullet
 - Outside the pressure vessel (0.5 X₀ of Al) \bullet
 - 80 / 45 layers \bullet
 - 5 mm Sc (+ Boron loaded), 10 mm Sc \bullet
- Two levels \bullet
 - Simulation level
 Geant4 step \bullet
 - **Reconstruction level reconstructed calorimeter hit**
- Assumes 250 ps time resolution \bullet
- Requirements: \bullet
 - First hit in time with **at least 3 MeV** of deposited energy
- Classified as **first interaction / scatter** based: \bullet
 - On the distance between the primary neutron endpoint and the reconstructed hit (d < 6 cm \sim 2-3 tiles) lacksquare

Neutron energy reconstruction. First Setup

First Setup

- 2 mm Cu + 5 mm Sc (80 layers)
- Overall efficiency of above **50-60%**
 - Mostly **dominated** by rescatters
- Energy reconstruction
 - @ 50 MeV: large fraction at -1 (very delayed events due to *nucleus de-excitations*)
 - @ 400 MeV: Rescatter get more pronounced
 - Rescatter more pronounced at higher KE energies

Neutron energy reconstruction. **First Setup**

First Setup

- 2 mm Cu + 5 mm Sc (80 layers) ullet
- Overall efficiency of above **50-60%** \bullet
 - Mostly **dominated** by rescatters ullet
- Energy reconstruction \bullet
 - @ 50 MeV: large fraction at -1 (very delayed events due \bullet to nucleus de-excitations)
 - @ 400 MeV: Rescatter get more pronounced \bullet
 - Rescatter more pronounced at higher KE energies \bullet
- **Overall picture** \bullet
 - Bias increases with KE RMS slightly increases \bullet
 - Adding rescatters worsen the bias and resolution \bullet

Neutron energy reconstruction. **Second Setup**

Second Setup

- 2 mm Cu + 5 mm Sc with 5% natural B (1% B^{10}) in weight • (80 layers)
- Overall efficiency of above **50-60%** \bullet
 - Mostly **dominated** by rescatters \bullet
 - Slight **improvement below 200 MeV** mostly due to ulletgamma from neutron capture with the B¹⁰

Neutron energy reconstruction. **Second Setup**

Second Setup

- 2 mm Cu + 5 mm Sc with 5% B^{10} in weight (80 layers) •
- Overall efficiency of above **50-60%** \bullet
 - Mostly **dominated** by rescatters ullet
 - Slight **improvement below 200 MeV** me mostly due to \bullet gamma from neutron capture with the B¹⁰
- Energy reconstruction \bullet
 - @ 50 MeV: smaller fraction at -1 \bullet
 - @ 400 MeV: Rescatter get more pronounced \bullet
 - Visible peak around -0.5 mm may be due to delayed \bullet neutron capture in B¹⁰

Neutron energy reconstruction. **Second Setup**

Second Setup

- 2 mm Cu + 5 mm Sc with 5% B^{10} in weight (80 layers)
- Overall efficiency of above **50-60%** \bullet
 - Mostly **dominated** by rescatters ullet
 - Slight **improvement below 200 MeV** mostly due to \bullet gamma from neutron capture with the B¹⁰
- Energy reconstruction \bullet
 - @ 50 MeV: smaller fraction at -1 \bullet
 - @ 400 MeV: Rescatter get more pronounced \bullet
 - Visible peak around -0.5 mm may be due to delayed \bullet neutron capture in B¹⁰ (need to check)

Overall picture \bullet

- 1st interaction resolution more flat \bullet
- Very similar to 5 mm Sc w/o B¹⁰ \bullet

Neutron energy reconstruction. **Third Setup**

Third Setup

- 2 mm Cu + 10 mm Sc (45 layers)•
- Overall efficiency of above **50-60%** \bullet
 - Still **dominated** by rescatters but smaller contribution ulletmainly due to less layers, however degrades heavily the EM resolution
 - Slight improvement at low KE for first interactions? \bullet

Neutron energy reconstruction. **Third Setup**

Third Setup

- 2 mm Cu + 10 mm Sc (45 layers)•
- Overall efficiency of above **50-60%** \bullet
 - Still **dominated** by rescatters but smaller contribution ulletmainly due to less layers, however degrades heavily the EM resolution
 - Slight improvement at low KE for first interactions? \bullet
- Energy reconstruction \bullet
 - @ 50 MeV: smaller fraction at -1 sharper peak \bullet
 - @ 400 MeV: Rescatter get more pronounced \bullet
 - Multiple peaks me needs investigations \bullet

Neutron energy reconstruction. **Third Setup**

Third Setup

- 2 mm Cu + 10 mm Sc (45 layers) ullet
- Overall efficiency of above **50-60%** \bullet
 - Still **dominated** by rescatters but smaller contribution \bullet mainly due to less layers, however *degrades heavily the* EM resolution
 - Slight improvement at low KE for first interactions? \bullet
- Energy reconstruction \bullet
 - @ 50 MeV: smaller fraction at -1 sharper peak \bullet
 - @ 400 MeV: Rescatter get more pronounced \bullet
 - Multiple peaks me needs investigations \bullet
- **Overall picture** \bullet
 - Similar conclusions as 5 mm Sc \bullet
 - Bias and resolution slightly more flat \bullet

Where to optimise?. **Guided by the physics**

- Preliminary studies done by Hiro \bullet
- **Understand** π^0 production in DUNE to help in ECAL design \bullet considerations
- Momentum of $\pi^0 \implies$ guide the *dynamic range* needed and \bullet the needed granularity (angular separation)
- Kinematics: \bullet
 - π^0 s up to 5 GeV/c
 - π^0 s below 1 GeV/c \implies large angle between the photons \bullet
- Angular distribution: \bullet
 - High energy photon lead to very small angular \bullet separation
 - Low energy photons angular separation typically \bullet around 20 degrees and above
 - Contains most of the events 2.5 cm granularity ulletfew degrees

Conclusions for neutron studies. To take away

- Neutron energy reconstruction is **challenging** but would be a plus for the near detector \bullet
 - Increase of scintillator thickness may improve the efficiency at lower neutron KE \bullet
 - Number of layer will influence the number of rescatters in less would improve the energy resolution / however would \bullet impact the EM resolution
 - \bullet recoil from gamma emissions by timing?
- <u>Next steps</u>: \bullet
 - Looking at MC in more details to get a better understanding \bullet
 - Investigate efficiency and purity in *background environment* \bullet
 - \bullet
 - Understand timing of doped Sc is does it affect the *background rate*? \bullet

Loaded-boron Sc me may be a very nice solution to improve efficiency at low neutron KE + Can we differentiate proton

Investigate Gadolinium coating (would not change optical properties of the Sc) and Lead absorber (high Z material)

Neutral pion reconstruction. Work in progress

- 400 MeV neutral pion
- Look at the distance to the true vertex and reconstructed invariant mass
- π⁰ s reconstructed between 100-150 MeV (due to clustering effects)
- Distance to the truth vertex around 150 200 cm mostly the z-coordinate is badly reconstructed
- Factor ~x5 worse than more complete studies
 - Not yet using the Chi2 minimization important for the position resolution
 - Clustering not optimized

Neutral pion reconstruction. Work in progress

- 400 MeV neutral pion at 15/15 cm vertex ullet
- Distance between the true vertex and the PCA from the line \bullet determined from the highest energy cluster is better angular resolution!
- Very promising method to be used for better constrain on the \bullet vertex location

_hDistanceTruthHighest

