Event-by-event neutrino-hydrogen interactions with a hydrocarbon-gas TPC

By François Haf

Xianguo LU/ 卢显国 University of Oxford

TPC Mini Workshop CERN, 12 July 2019

Physics Beyond Standard Model via Neutrino Oscillations

Quarks Forces Higgs boson τ Massless Leptons

Neutrinos have mass

Distance

Xianguo Lu, Oxford

oscillation between flavor states as a function of *time* ~distance/energy

Only 2 flavors, same oscillation behavior

Xianguo Lu, Oxford

*3-flavor paradigm

oscillation between flavor states as a function of *time* ~distance/energy

Xianguo Lu, Oxford

 V_{e}

Xianguo Lu, Oxford More in http://www-pnp.physics.ox.ac.uk/~luxi/visos

More in http://www-pnp.physics.ox.ac.uk/~luxi/visos

Oscillation Measurements – v and v interactions

Intrinsic difference in v and \overline{v} event rates without CPV

Oscillation Measurements – v and v interactions

Nuclear effects like "2p2h" make it worse

Nuclear effects: all effects due to target A>1 Proton and neutron have VERY different experimental signatures

Oscillation Measurements – v and v interactions

Transverse Kinematic Imbalance (TKI) to study interaction details with nuclei

Stationary nucleon target

Fermi motion Final-state interactions *Transverse Kinematic Imbalance (TKI) to study interaction details with nuclei*

Neutrino-Hydrogen Interactions – Review

- Pure hydrogen
 - Technical requirement: bubble chamber (historical: 73, 79, 78, 82, 86)

- Safety issue: explosive
 - Due to buoyancy, more dangerous for underground experiments
- Neutrino interactions on hydrogen:
 - In the last ~30 years there has been no new measurement
 - No nuclear effects → much desired for flux constraint and nucleon cross section input for oscillation analysis
 - Nucleon structure \rightarrow new frontier of hadron physics

l p interaction \rightarrow 3 charged particles: *l* p \rightarrow *l'* X Y

[XL, et al. Phys. Rev. D 92, 051302 (2015), XL, JPS Conf. Proc. 12, 010034 (2016)]

{X, Y} = {p, π^+ } for $\nu + p \rightarrow \ell^- + \Delta^{++}$ or {p, π^- } for $\bar{\nu} + p \rightarrow \ell^+ + \Delta^0$

l p interaction \rightarrow 3 charged particles: *l* p \rightarrow *l'* X Y

[XL, et al. Phys. Rev. D 92, 051302 (2015), XL, JPS Conf. Proc. 12, 010034 (2016)]

l p interaction \rightarrow 3 charged particles: *l* p \rightarrow *l'* X Y

[XL, et al. Phys. Rev. D 92, 051302 (2015), XL, JPS Conf. Proc. 12, 010034 (2016)]

Double-transverse momentum imbalance $\delta p_{_{TT}}$

- H: 0
- Heavier nuclei: irreducible symmetric broadening
 - by Fermi motion *O*(200 MeV) and FSI
- CH_n: vH interaction can be extracted
 - vH $\delta p_{TT} \sim O(<10 \text{ MeV})$ after detector smearing
 - vC $\delta p_{\rm TT} \sim 200 \text{ MeV}$

T2K off-axis near detector (ND280)

T2K off-axis near detector (ND280)

Tracker:

- FGD: Fine-Grained Detector
 - 1. CH target (same as DUNE 3DST)
 - 2. CH + H_2O target
- Time Projection Chamber (TPC)

T2K off-axis near detector (ND280)

Neutrino-Hydrogen Interactions – *T2K* example

4

2

 $E_{v_{II}}$ (GeV)

1

3

Neutrino-Hydrogen Interactions – *Perspective*

Toy simulation of T2K performance (T2K neutrino flux on **CH** target) > Realistic detector resolution as T2K gas TPC (~10% at 1 GeV/c)

• When tracking resolution improves, only signal distribution gets narrower, background still wide due to Fermi motion and FSI! → Signal/background improves

Neutrino-Hydrogen Interactions – Perspective

Neutrino-Hydrogen Interactions – *Perspective*

Z-Y Projection: Sample event ~ - $\nu_{\mu}\text{CC}$

Name	Formula	Signal rate	Background rate	S/B
pure hydrogen	H ₂	1 (ref.)	-	-
polystyrene (solid)	(C ₈ H ₈)n or CH	-	- 🤇	0.17
P-10	90% Ár + 10% CH ₄	0.2	8.4	0.02
P-50	50% Ar + 50% CH ₄	1	6	0.17
helium-methane (50:50)	50% He + 50% CH ₄	1	2	0.5
helium-ethane (50:50)	50% He + 50% C ₂ H ₆	1.5	3.5	0.43

• State-of-the-art tracking resolution in gas TPC

ALICE TPC (~1% at 1 GeV/c, 10 times better compared to T2K) \rightarrow S/B = 8 on CH target (recap T2K ~10% at 1 GeV/c, S/B = 0.8)

• DUNE Near Detector High Pressure gas TPC can achieve 95% vH purity with 50% He + 50% CH₄ or 50% He + 50% C₂H₆ \rightarrow S/B = 24 or 20

> *By optimizing proton/neutron ratio, we gain a factor of ~3 improvement in S/B.

For less superb tracking resolution, e.g. 2% at 1 GeV/c, namely only 5 times better than T2K

• $S/B = 10 \rightarrow purity = 90\%$

v-H Discussions (1/2)

- Previous estimation needs to be corrected for
 - Kinematic distributions at DUNE energy
 - Pion and proton momentum will saturate for $E_v > 1 \text{GeV}$ (form factor effect)
 - Track topology
 - Inclination angle
 - TPC tracking performance with different gas at different pressure
 - Drift & attachment, gain, multiple scattering
 - 50% He + 50% CH₄ <Z>=6, 1/3 of argon (Z=18); <A>=10, ¼ of argon (A=40)
 - 10 atm, $\rho \sim \times$ 10/4 = 2.5 times of 1 atm argon
 - $1/X_0 \sim Z^2/A = 4/9$, $\sqrt{(\rho/X_0)} = \sqrt{(10/9)}$, similar to 1 atm argon
- Do we have good simulation of gas properties?
 - Do we need new measurements?

General Discussions (2/2) – Event Topology

DUNE HPgTPC spectrometer muons

General Discussions (2/2) – Event Topology

We can use ALICE cosmic muons to mock DUNE HPgTPC spectrometer muons:

Data exist, just need to modify (slightly?) ALICE TPC standalone tracking?

BACKUP

END