

LHCb results on exotic spectroscopy

Marcin Kucharczyk on behalf of LHCb collaboration IFJ PAN Kraków

Excited QCD 2020, Krynica Zdrój

2 - 8 February 2020

Outline

Exotic baryons

- Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_c(4450)^+$ [PRL 122 (2019) 222001]
- Observation of $B^0_{(s)} \to J/\psi \ p\bar{p}$ decays and precision measurements of the $B^0_{(s)}$ masses [PRL 122 (2019) 191804]

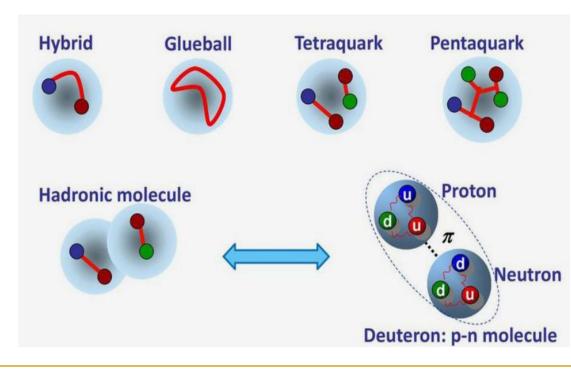
Exotic mesons

• Evidence of $\eta_c(1S)\pi^-$ resonance in $B^0 \to \eta_c(1S)K^+\pi^-$

[EPJ C78 (2018) 1019]

• Model-independent observation of exotic contributions to $B^0 \to J/\psi K^+\pi^-$ decays [PRL 122 (2019) 152002]

Exotic hadrons

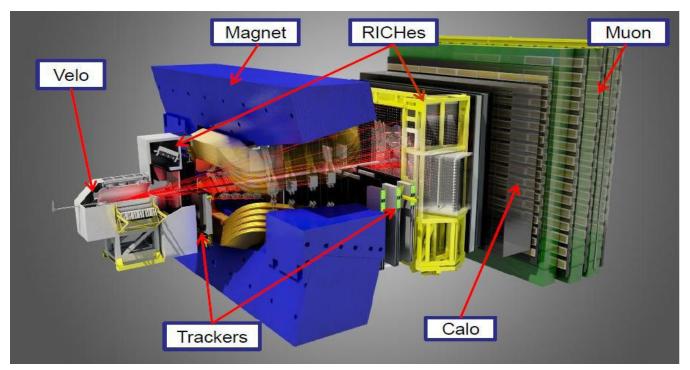


Bound states of quarks were first proposed in 1964 by Gell-Mann and Zweig

- exotic hadrons: everything beyond $q\bar{q}$ -meson and qqq-baryon scheme
- exotic states can be both neutral (X, Y) and charged (Z^+, P_c^+)
- exotic hadrons can provide unique probe to QCD

Different properties expected depending on proposed binding mechanism

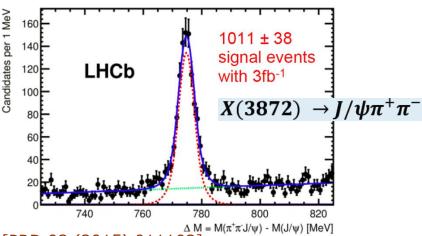
- tight tetra or pentaquarks
- molecules of meson-meson, meson-baryon
- hybrid-meson
- ...
- or rescattering effects
 - → triangle diagrams


LHCb detector

forward spectrometer at LHC collider

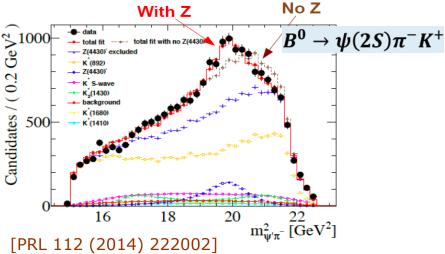
[Int. J. Mod. Phys. A30 (2015) 1530022]

designed for measuring CP violation & rare decays of heavy hadrons

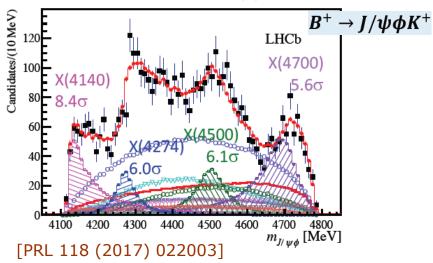


- precision coverage unique for LHCb 2 < η < 5 (~40% of $b\bar{b}$ in forward region)
- excellent tracking and vertexing $(\sigma(IP) \sim 20 \ \mu m \ for \ high-p_T \ tracks)$
- good hadron PID separation up to 100 GeV
- efficient trigger with μ 's

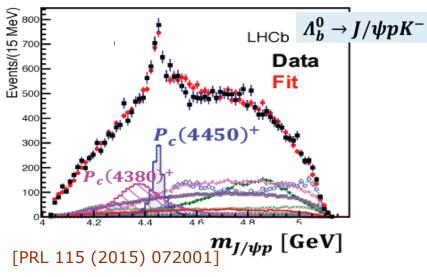
Previous LHCb results



X(3872): Confirmation of $J^{PC} = 1^{++}$



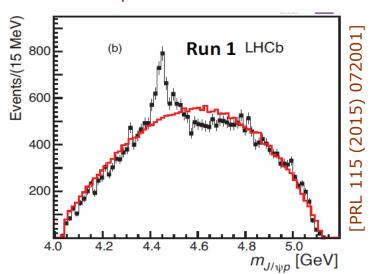
[PRD 92 (2015) 011102]

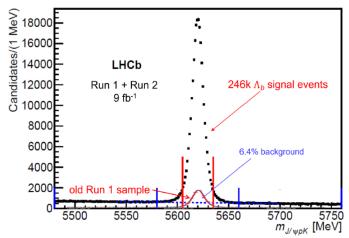

Z(4430): LHCb confirmation

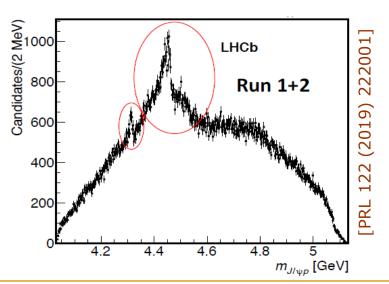
Observation of four $J/\psi\phi$ **structures**

Observation of 2 charmonium pentaquarks

Exotic baryons

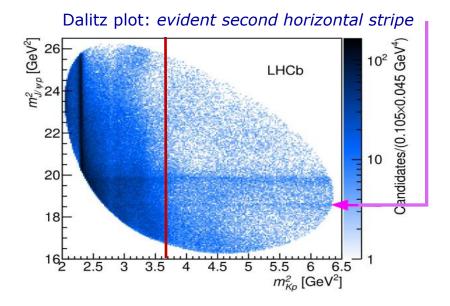

[PRL 122 (2019) 222001]

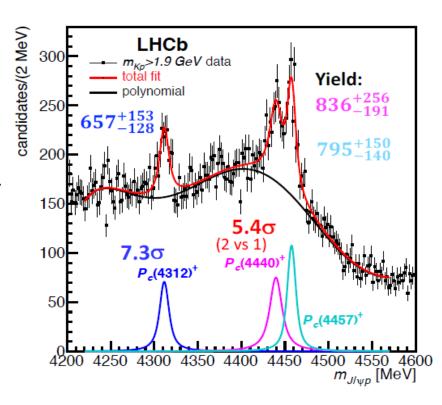

- 2015: LHCb observed exotic contributions decaying to $J/\psi p$ in $\Lambda_h{}^0 \to J/\psi p$
 - → exotic contributions near 4450 MeV supported by model independent analysis


with more than 9σ [PRL 117 (2016) 082002]

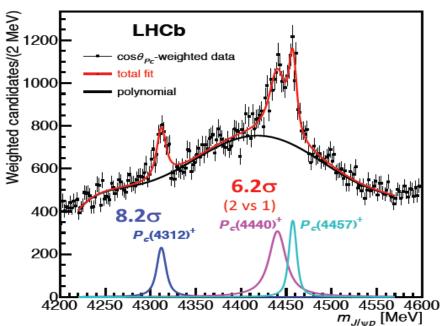
- 2019: dataset 9× larger than used previously
 - → better selection
 - → higher luminosity
 - → higher cross section at 13 TeV

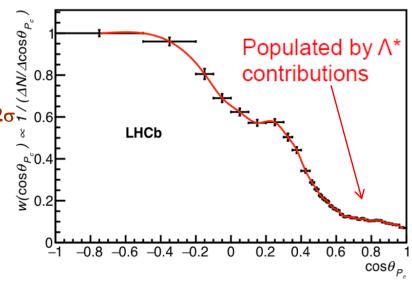
Structure at 4312 MeV and $P_c(4450)^+$ resolved into 2 narrower peaks at 4440 and 4457 MeV





- new narrow structures
 - → use 1D mass fit with BW amplitudes
 - → not sensitive to broad states
- fit $m_{\rm Kp} > 1.9$ GeV events
 - → ~80% Λ* background removed
- significances:
 - $\rightarrow P_{c}(4312)^{+}$ **7.3** σ
 - \rightarrow two-peak structure around 4450 MeV **5.4** σ

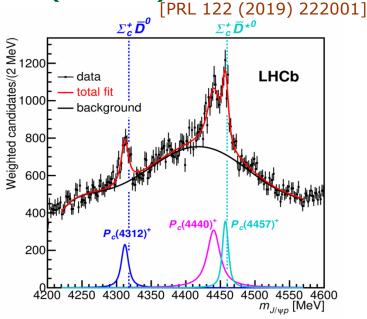

[PRL 122 (2019) 222001]

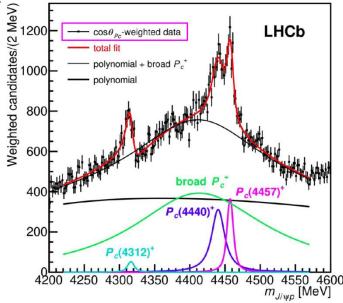

Novel method to reduce contributions from Λ^* states

- reweighting by the angle between K^- and J/ψ in the P_c rest frame
- best statistical significance achieved
- significances:

$$\rightarrow$$
 P_c (4312)⁺ **8.2**σ

 \rightarrow two-peak structure around 4450 MeV **6.2** σ > 0.6

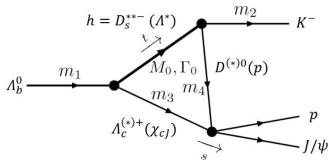


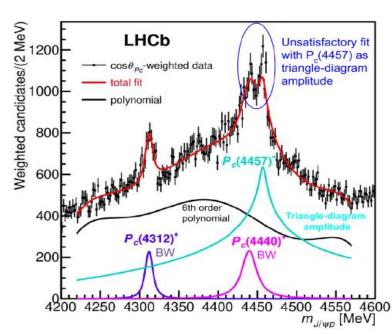


- **best model:** 3 Breit-Wigner's convolved with the resolution function
- masses of $P_c(4312)^+$, $P_c(4440)^+$, $P_c(4457)^+$ just below mass thresholds of $\Sigma_c^+ \bar{\mathbf{D}}^{(*)0}$ favour "molecular" pentaquarks with meson-baryon substructure, but other hypotheses are not ruled out
- 1D fit provides limited information
- amplitude analysis required to:
 - \rightarrow measure J^P and get information of possible $P_c(4380)^+$
 - → find isospin partners and other decay modes

Largest systematic uncertainty: unknown interference terms

State	<i>M</i> [MeV]	Г [MeV]	(95% CL)
	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+~3.7}_{-~4.5}$	(< 27)
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+~8.7}_{-10.1}$	(< 49)
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$	(< 20)


[PRL 122 (2019) 222001]

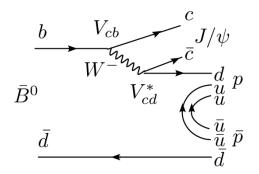

Interpretation: molecules

- near-threshold masses and narrow resonances support molecular structure
- \bullet J^{P} assignments, isospin partners, other decays required to confirm

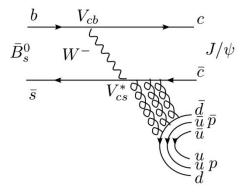
Interpretation: hadronic rescattering

- resonances could also be caused by rescattering of hadrons via a triangle diagram
- can lead to a peaking structure when the rescattered particles are near to on-shell masses
- would correspond to a depletion in the non-rescattered final state due to unitarity
- $P_c(4312)^+$ and $P_c(4440)^+$ are too far from any rescattering thresholds
- $P_c(4457)^+$ peaks at $\Lambda_c(2595)^+\overline{D}{}^0$ threshold, so possible triangle diagram with $D^*_{s1}(2860)^-$
 - → but using three Breit-Wigner's provides a fit of better quality
 - → further investigation needed

Observation of $B^0_{(s)} \rightarrow J/\psi \ p\bar{p}$

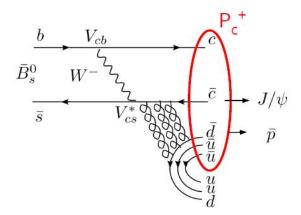


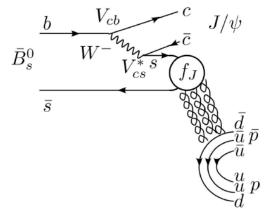
[PRL 122 (2019) 191804]


Candidate for pentaguark in $J/\psi p$ and $J/\psi \overline{p}$ and for glueball in $p\overline{p}$ system

• both processes are suppressed due to Cabibbo and OZI suppressions

$$B_d^0 o J/\psi p \bar{p}$$
 - Cabibbo suppressed


$$B_s^0 o J/\psi p ar p$$
 - OZI-suppressed



glueballs in pp system

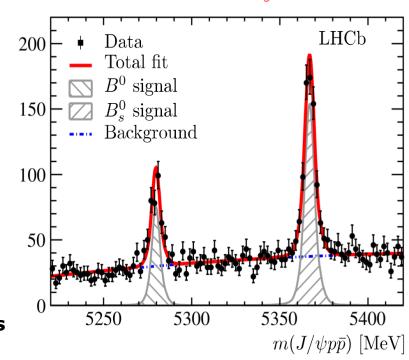
Can be enhanced by contributon from intermediate resonances of exotic nature

exotic states in $J/\psi p$ system

Observation of $B^0_{(s)} \rightarrow J/\psi \ p\bar{p}$

[PRL 122 (2019) 191804]

First observation of $B^0_{(s)} \to J/\psi p\bar{p}$ decays using 2011-2016 data (5.2 fb⁻¹)


$$\mathcal{B}(B^0 \to J/\psi p\bar{p}) = (4.51 \pm 0.40 \text{ (stat)} \pm 0.44 \text{ (syst)}) \times 10^{-7}$$

 $\mathcal{B}(B_s^0 \to J/\psi p\bar{p}) = (3.58 \pm 0.19 \text{ (stat)} \pm 0.33 \text{ (syst)}) \times 10^{-6}$

 11.5σ for B^0 mode 19.5σ for B_s^0 mode

- BR of Bs
 - → 2 orders of magnitude higher than expected
- BR of B⁰
 - → good agreement with theoretical expectation
- need more data for a full Dalitz-analysis for exotic searches

Best single measurement of ${\bf B_s}$ and ${\bf B^0}$ masses

$$m_{B^0} = 5279.74 \pm 0.30 \text{ (stat)} \pm 0.10 \text{ (syst)} \text{ MeV},$$

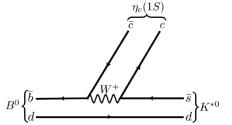
 $m_{B^0_s} = 5366.85 \pm 0.19 \text{ (stat)} \pm 0.13 \text{ (syst)} \text{ MeV}.$

Mode	Yield	
$B^0 o J/\psi p \bar p$	256 ± 22	
$B_s^0 o J/\psi p \bar p$	609 ± 31	

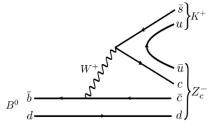
Candidates / (2 MeV)

Exotic mesons

Evidence of $Z_c(4100)^-$ in $B^0 o \eta_c \pi^- K^+$


Search for $\eta_c \pi^-$ resonance in $B^0 \to \eta_c K^+ \pi^-$ decays

- all Z_c states have at least $c\bar{c}q\bar{q}$ quark content
- measured J^P of observed Z_c states are all 1+, while $\eta_c(1S)\pi^-$ can access other J^P
- searching for $\eta_c(1S)\pi^-$ resonances is important for understanding nature of exotic hadrons, e.g. for $Z_c(3900)^-$ BESIII [PRL 111 (2013) 242001]

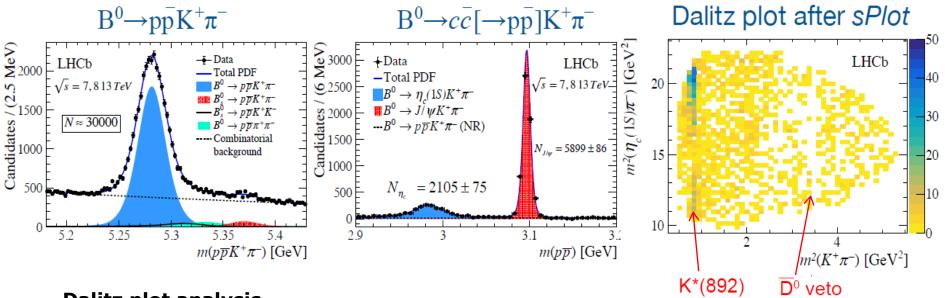

Possible interpretations:

- \rightarrow hadrocharmonium: a state decaying to $\eta_c(1S)\pi^-$ at mass ~3800 MeV
- ightarrow quarkonium hybrid model: different multiplets in $\eta_c(1S)\pi^-$ system, their masses and quantum numbers
- \rightarrow diquark model: predicts $J^P = 0^+$ state in $\eta_c(1S)\pi^-$ below open-charm threshold

LHCb has an evidence of $Z_c(4100)^- \rightarrow \eta_c \, \pi^-$ that cannot be 1+

 K^{*0} resonances dominate decay

Exotic resonance predicted in $\eta_c(1S)\pi^-$

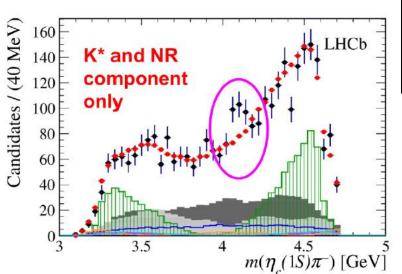

Only pseudoscalar particles in the final state → Dalitz plot analysis is possible

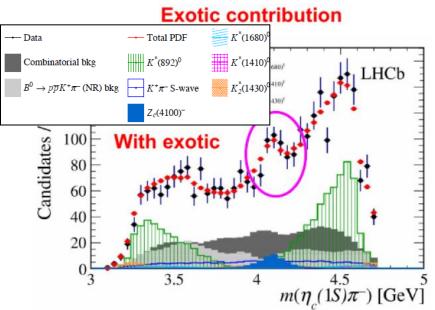
Evidence of $Z_c(4100)^-$ in $B^0 o \eta_c \pi^- K^+$

Dalitz plot analysis of $B^0 o \eta_c K^+\pi^-$ decays performed where $\eta_c(\mathbf{1}S) o p\overline{p}$

- $\mathcal{L} = 4.7 \text{ fb}^{-1}$, 2011-2016 data
- 2D fit to $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$ distribution, $N_{siq}=1870\pm74$
- Dalitz plot dominated by K*(892) signal

Dalitz plot analysis

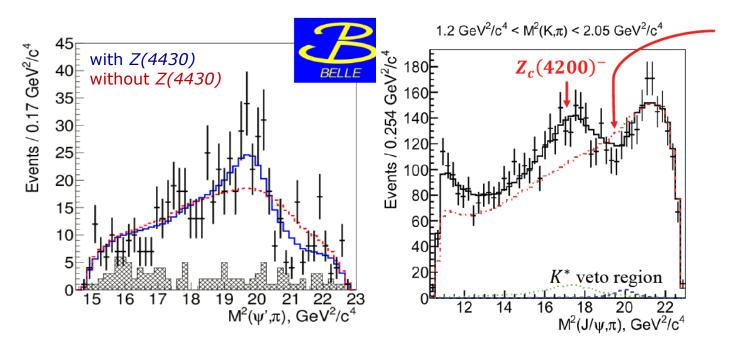

- decay amplitude: sum of resonant $K^+\pi^-$ + non-resonant (NR) processes
- six K^{*0} resonances give significant contributions
- exotic $Z_c(4100)^- \to \eta_c \pi^-$ contribution added to improve the fit


Evidence of $Z_c(4100)^-$ in $B^0 o \eta_c \pi^- K^+$

[EPJ C78 (2018) 1019]

Conventional states only

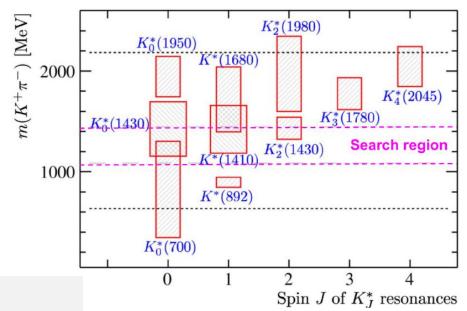
- K*0 resonances and NR component alone cannot describe the data
- good description by adding exotic $Z_c(4100)^- o \eta_c \pi^-$ component
- evidence for exotic $Z_c(4100)^-$ resonance $\rightarrow 3.4\sigma$ significance considering systematics
- both $J^p = 0^+$ and $J^p = 1^-$ are consistent with the data \rightarrow yet 0^+ is not excluded \rightarrow can't determine its nature with current statistics


$$Z_c(4100)^- \ M = 4096 \pm 20^{+18}_{-22} \ {
m MeV} \ \Gamma = 152 \pm 58^{+60}_{-35} \ {
m MeV} \ J^P = 0^+/1^-$$

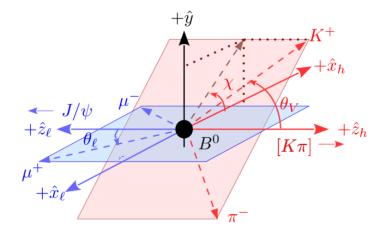
Exotic contributions to $B^0 \rightarrow J/\psi K^+\pi^-$

Charged charmonium-like state in $B^0 \rightarrow \psi(2S)\pi K$

- originally found by Belle in $B \to (Z(4430)^- \to J/\psi \pi^- \ K \text{ and } B \to (Z(4430)^- \to \psi(2S) \pi^-) \ K$ [PRL 100(2008) 142001, PR D80(2009) 031104, PR D88(2013) 074026] \to not confirmed by BaBar [PR D79 (2009) 112001]
- exotic $Z(4430)^- \to \psi(2S) \pi^-$ confirmed by LHCb in 2014 [PRL 112 (2014) 222002]
- Belle reported another exotic $Z(4200)^-$ in $J/\psi\pi^-$ system [PRD 90 (2014) 112009]


 $Z_c(4430)^-$ presented via destructive interference

Exotic contributions to $B^0 \rightarrow J/\psi K^+\pi^-$

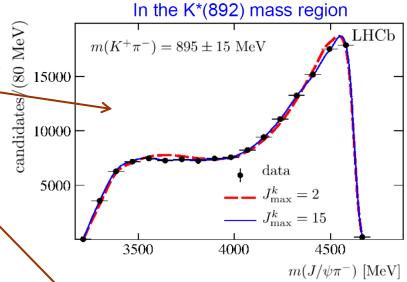


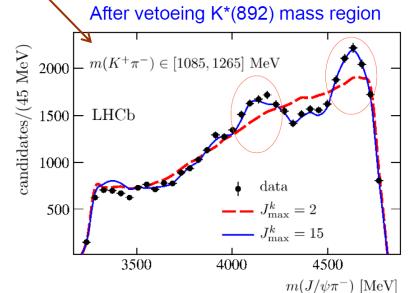
[PRL 122 (2019) 152002]

- $B^0 \to J/\psi K^+\pi^-$ decay dominated by many overlapping K^*_J states
- parameters of K* spectrum are wide and not very well experimentally measured
- model-independent analysis relying only on highest allowed spin K^*_{I} for given m(K+ π^-)
 - → no assumption about resonant structures

- Run-1 data, x20 Belle
 - \rightarrow signal yield $B^0 \rightarrow J/\psi \pi^- K^+ \sim 5 \times 10^5$
- dataset allows for 4D angular analysis in 35 bins of $m(K^+\pi^-)$
- novel 3D angular moments to boost sensitivity
 - \rightarrow 2 helicity angles: θ_{ν} , θ_{V}
 - \rightarrow angle between $(\mu^+\mu^-)$ and $(K^+\pi^-)$ decay planes: χ

Exotic contributions to $B^0 \rightarrow J/\psi K^+\pi^-$




[PRL 122 (2019) 152002]

 data inconsistent with K*-only contributions by 10σ

- $K^*(892)$ region: well described by contributions with $J_{max} = 2$ only
- $K^*(892)$ veto: unphysical $J_{max} = 15$ needed to describe the data
 - \rightarrow m(J/ $\psi\pi$) \sim 4200 and 4600 MeV regions
- model dependent amplitude analysis needed to determine properties of these structures

Future prospects

[arXiv:1808.08865]

$$L = 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$$

1.1 visible interact. / xing

8 fb⁻¹ collected

$$L = 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$$

5.5 visible interact. / xing

50 fb⁻¹ to be collected

$L = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
55 visible interact. / xing
300 fb⁻¹ to be collected

	LHCb		
Decay mode	$23 {\rm fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300{\rm fb}^{-1}$
$(B^+ \to X(3872)(\to J/\psi \pi^+ \pi^-)K^+)$	14k	30k	180k
$B^+ \to X(3872) (\to \psi(2S)\gamma) K^+$	500	1k	7k
$B^0 \rightarrow \psi(2S)K^-\pi^+$	340k	700k	$4\mathrm{M}$
$B_c^+ \to D_s^+ D^0 \overline{D}{}^0$	10	20	100
$\Lambda_b^0 \rightarrow J/\psi p K^-$ [*]	680k	1.4M	8M
$(\Xi_b^- \to J/\psi \Lambda K^-)$	4k	10k	55k
$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600

[*] updated according to the latest result

LHCb data sample will be boosted

- observation of new states
- precise measurement of observed states

Conclusions

- LHCb has made great progress in exotic spectroscopy
- Many new states discovered since the first observation of *X*(3872)
- LHCb working now on full Run 1 and Run 2 dataset where statistics allow for new amplitude analyses
 - → with 10× signal yields 3 narrow pentaquark candidates observed
 - ightarrow observation of $B^0_{(s)}
 ightarrow J/\psi \ p\overline{p}$, larger branching fraction wrt theory prediction
 - ightarrow evidence of $Z_c(4100)^-
 ightarrow \eta_c \pi^-$, $J^P \neq 1^+$
 - ightarrow model-independent confirmation of exotic contribution to $B^0
 ightarrow J/\psi K\pi$
- Many other LHCb analyses on exotic spectroscopy
- Excellent long term prospects for exotic searches at LHCb

Backup

Some other recent results on baryon spectroscopy

• First observation of excited Ω_h^- states

[arXiv:2001.00851]

 Near-threshold DD spectroscopy and observation of a new charmonium state

[JHEP 1907 (2019) 035]

• Observation of the $\Lambda^0_b \to \chi_{c1}(3872) \ p \ K^-$ decay

[JHEP 09 (2019) 028]