

Recent results on XYZ states from the BESIII experiment

Nils Hüsken Westfälische Wilhelms-Universität Münster, Germany on behalf of the BESIII Collaboration

€€SII

living.knowledge

The BESIII Experiment

- BEijing Spectrometer (BESIII) at the Beijing Electron Positron Collider (BEPCII)
- located at the Institute for High Energy Physics (IHEP), Beijing, China
- \circ symmetric, double-ring e^+e^- collider in the τ charm region

- peak luminosity: $\approx 10^{33}$ cm⁻² s⁻¹ at $\sqrt{s} = 3.770$ GeV
- energy range: $2 \text{ GeV} ≤ \sqrt{s} ≤ 4.6 \text{ GeV}$
- \circ crossing angle of 11 mrad

The BESIII Experiment

- **MDC:** Drift chamber in 1.0 T magnetic field
- TOF: Plastic scintillator based time-of-flight system
- **EMC:** Electromagnetic calorimeter
- **RPC:** resistive plate chambers for muon identification

The BESIII Experiment

- in recent years, BESIII accumulated roughly 16 fb⁻¹ of e^+e^- collision data above $\sqrt{s} = 3.8 \text{ GeV}$
- these can be used to study open-charm & XYZ meson production & decays
- new data at 8 additional energies taken throughout 2019 will allow to improve lineshape analysis of vector-exotics

Nils Hüsken

 Until 2003, charmonium was thought to be well understood...

Nils Hüsken

- Until 2003, charmonium was thought to be well understood...
 - \circ 2003: discovery of the *X*(3872) by Belle
 - recent years: multiple new states discovered in various experiments

Nils Hüsken

PRL 91, 262001 (2003)

3.82 3.84 3.86 3.88 3.9 3.92

M(J/ψ ππ) (GeV)

20 Se

B

BELLE

- Until 2003, charmonium was thought to be well understood...
 - 2003: discovery of the *X*(3872) by Belle
 - recent years: multiple new states discovered in various experiments

Nils Hüsken

Nils Hüsken

Nils Hüsken

Nils Hüsken

Recent results: *Y*(4260)

- $\circ~$ new study of $e^+e^- \rightarrow \omega \chi_{c0}$ at $4.18~{\rm GeV} \leq \sqrt{s} \leq 4.28~{\rm GeV}$
- reconstructing $\omega \to \pi^+ \pi^- \pi^0$ and $\chi_{c0} \to \pi^+ \pi^- / K^+ K^-$
- observation of a resonance with $m = 4218.5 \pm 1.6 \pm 4.0 \text{ MeV}/c^2$, $\Gamma = 28.2 \pm 3.9 \pm 1.6 \text{ MeV}$
- o confirmation of an earlier measurement

- similar resonances seen in $\omega \chi_{c0}$, $\pi^+ \pi^- h_c$, $\pi^+ \pi^- J/\psi$, $\pi^+ \pi^- \psi(2S)$ and $\pi^+ D^0 D^{*-}$
- all agree on a lower mass value $Y(4260) \rightarrow Y(4220)$
- inconsistencies regarding the width, might be caused by Breit-Wigner parameterization

Recent results: *Y*(4260)

Nils Hüsken

prediction:

 $R_{Z^{(\prime)}} = \frac{Br(Z_c^{(\prime)} \to \rho \eta_c)}{Br(Z_c^{(\prime)} \to \pi J/\psi)}$

assignments

to discriminate between

molecular & tetraquark

Recent results: $Z_c(3900)$

Recent results: $Z_c(3900)$

◦ process $e^+e^- \rightarrow \eta_c \rho^{\pm} \pi^{\mp}$ studied at five energies between 4.23 GeV ≤ \sqrt{s} ≤ 4.60 GeV

prediction:

assignments

 $R_{Z^{(\prime)}} = \frac{Br(Z_c^{(\prime)} \to \rho \eta_c)}{Br(Z_c^{(\prime)} \to \pi J/\psi)}$

to discriminate between

molecular & tetraquark

- \circ η_c reconstructed in 9 decay modes
- signal of e⁺e[−] → η_cπ⁺π[−]π⁰ observed with a significance of 4.2σ

Recent results: $Z_c(3900)$

- strong evidence (4.3 σ) for $Z_c(3900) \rightarrow \rho \eta_c$ at $\sqrt{s} = 4.23 \text{ GeV}$
- no signal observed for $Z_c'(4020) \rightarrow \rho \eta_c$ Ο
- ratio $R_Z = 2.2 \pm 0.9$ and $R_{Z'} < 0.9$ Ο

Nils Hüsken

Recent results: *X*(3872)

- BESIII: X(3872) production in $e^+e^- \rightarrow \gamma X(3872)$
- allows to look for decay modes other than $X(3872) → π^+π^-J/ψ$

Recent results: *X*(3872)

- BESIII: X(3872) production in $e^+e^- \rightarrow \gamma X(3872)$
- allows to look for decay modes other than $X(3872) → π^+π^-J/ψ$

◦ observation of $X(3872) \rightarrow \pi^0 \chi_{c1}$ with 5.2 σ, no signal for $\chi_{c0,2}$

•
$$R_J = \frac{Br(X(3872) \to \pi^0 \chi_{cJ})}{Br(X(3872) \to \pi^+ \pi^- J/\psi)}$$
 with

$$R_0 < 19 \quad (90\% \text{ CL})$$

$$R_1 = 0.88^{+0.33}_{-0.27} \pm 0.10$$

$$R_2 < 1.1 \quad (90\% \text{ CL})$$

Recent results: *X*(3872)

- BESIII: X(3872) production in $e^+e^- \rightarrow \gamma X(3872)$
- allows to look for decay modes other than $X(3872) → π^+π^-J/ψ$
- observation of $X(3872) \rightarrow \pi^0 \chi_{c1}$ with 5.2 σ, no signal for $\chi_{c0,2}$

$$\Rightarrow R_{J} = \frac{Br(X(3872) \to \pi^{0} \chi_{cJ})}{Br(X(3872) \to \pi^{+} \pi^{-} J/\psi)} \text{ with } \begin{array}{c} R_{0} < 19 \quad (90\% \text{ CL}) \\ R_{1} = 0.88^{+0.33}_{-0.27} \pm 0.10 \\ R_{2} < 1.1 \quad (90\% \text{ CL}) \end{array}$$

• PRD 77, 014013 (2008): $\Gamma(X(3872) \to \pi^0 \chi_{c1}) \sim 0.06 \text{ keV}$ in case of a conventional $c\bar{c}$

o combining 3.2% < $Br(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ < 6.4% with $R_1 = 0.88$ would imply $c\bar{c}$ -state with $\Gamma_{tot}(X(3872)) \sim 1.0 - 2.0$ keV → strongly disfavors $c\bar{c}$ interpretation

Nils Hüsken

Summary

- to fully understand the XYZ states, studying their properties is highly important
- BESIII is uniquely suited to perform such studies, working directly in the energy region of interest
- \circ strong signal of *Y*(4220) → $\omega \chi_{c0}$
 - $\circ~$ first evidence for the decay $Z_c(3900)^\pm \rightarrow \eta_c \rho^\pm$
- first observation of $X(3872) \rightarrow \pi^0 \chi_{c1}$
- observation of *X*(3872) → $\gamma J/\psi$, but not $\gamma \psi(2S)$

◦ *Y*(4660) observed by Belle & BaBar in *Y*(4660) → $\pi\pi\psi(2S)$, $\Lambda_c\overline{\Lambda}_c$

 \circ BESIII measurement of $e^+e^- → Λ_c \overline{\Lambda}_c$ indicates different trend

Nils Hüsken

PRL 101, 172001 (2008)

- Y(4660) observed by Belle & BaBar in Y(4660) $\rightarrow \pi \pi \psi(2S)$, $\Lambda_c \overline{\Lambda}_c$
- BESIII measurement of $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ indicates different trend Ο

40

30

Nils Hüsken

Thank you for your attention!

Inter

Nils Hüsken

H

58. International Winter Meeting on Nuclear Physics