High sensitivity Quantum Mechanics tests in the Cosmic Silence

Kristian Piscicchia*

Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”
INFN, Laboratori Nazionali di Frascati

Excited QCD 2020
2-8 February 2020
Krynica Zdrój, Poland

*kristian.piscicchia@centrofermi.it
Pauli Exclusion Principle

In its original form by Pauli:

“In an atom there cannot be two or more equivalent electrons for which the values of all four quantum numbers \(n, l, m_l, m_s \) coincide. If an electron exists in an atom for which all of these numbers have definite values, then this state is ‘occupied’.”

Then extended to all fermions

Feynman Lectures on Physics:

“Why is it that particles with half-integral spin are Fermi particles (...) whereas particles with integral spin are Bose particles (...)?

We apologize for the fact that we can not give you an elementary explanation. An explanation has been worked out by Pauli from complicated arguments from quantum field theory and relativity. He has shown that the two must necessarily go together, but we have not been able to find a way to reproduce his arguments on an elementary level.

It appears to be one of the few places in physics where there is a rule which can be stated very simply, but for which no one has found a simple and easy explanation. (...) This probably means that we do not have a complete understanding of the fundamental principle involved.”
Several proofs exist in QFT which differ in clarity and quality of physical insight.

Proof of spin-statistics theorem by Lüders and Zumino

Postulates:

1. The theory is invariant with respect to the proper inhomogeneous Lorentz group (includes translations, does not include reflections)

2. Two operators of the same field at points separated by a spacelike interval either commute or anticommute (locality – microcausality)

3. The vacuum is the state of lowest energy

4. The metric of the Hilbert space is positive definite

5. The vacuum is not identically annihilated by a field

From these postulates it follows that (pseudo)scalar fields commute and spinor fields anticommute.

(G. Lüders and B. Zumino, Phys. Rev. 110 (1958) 1450)
Models of PEP violation

Theories of Statistics Violation

“Possible external motivations for violation of statistics include: (a) violation of CPT, (b) violation of locality, (c) violation of Lorentz invariance, (d) extra space dimensions, (e) discrete space and/or time and (f) noncommutative spacetime……”

Ignatiev & Kuzmin model: Fermi oscillator with a third state
(Ignatiev, A.Y., Kuzmin, V., Quarks '86: Proceedings of the 229 Seminar, Tbilisi, USSR, 15-17 April 1986)

\[a^+ |0\rangle = |1\rangle \quad \text{and} \quad a |0\rangle = 0 \]
\[a^+ |1\rangle = \beta |2\rangle \quad \text{and} \quad a |1\rangle = |0\rangle \]
\[a^+ |2\rangle = 0 \quad \text{and} \quad a |2\rangle = \beta |1\rangle \]

\[\beta \] quantifies the degree of violation in the transition \[|1\rangle \rightarrow |2\rangle \]

Govorkov, A. can not be genelized to quantum field theory! Physics Letters A 1989, 236 137, 7-10.
Models of PEP violation

- Greenberg, O.W.; Mohapatra, R.N. Local Quantum Field Theory of Possible Violation of the Pauli Principle. q parameter deforms anticommutators $a_k a_l^+ - qa_l^+ a_k = \delta_{k,l}$ Physical Review Letters 1987, 59, 2507

the global w. f. describing the totality of the electrons is not exactly antisymmetric → PEP mostly holds as long as the number of wrongly entangled pairs is small.

Common feature:

The non-Paulian character is intrinsic property of the system w. f. → can be tested looking for signature of a violating transition of a wrongly entangled pair, indeed...
Superpositions of states with different symmetry are not allowed → transition probability between two symmetry states is ZERO

Messiah-Greenberg superselection rule:

Closed system → **Open system** → **VIP-open systems** sets the best limit on PEP violation for an elementary particle respecting the M-G superselection rule

Forbidden by Superselection rule!
Search for anomalous X-ray transitions performed by electrons introduced in a target through a DC current (open system)

Normal $2p \rightarrow 1s$ transition

$\sim 8.05 \text{ keV in Cu}$

$2p \rightarrow 1s$ transition violating Pauli principle

$\sim 7.7 \text{ keV in Cu}$

Paul Indelicato (Ecole Normale Supérieure et Université Pierre et Marie Curie)

Multiconfiguration Dirac-Fock approach

Accounts for the shielding of the two inner electrons

The current-off spectrum provides the estimate of the background.
Possible external motivations for violation of statistics include: (a) violation of CPT, (b) violation of locality, (c) violation of Lorentz invariance, (d) extra space dimensions, (e) discrete space and/or time and (f) noncommutative spacetime.

Space-time non commutativity can induce sudden jumps to “wrong symmetry” states of a system violating the M-G superselection rule can be tested with violating transitions in CLOSED SYSTEMS key features: high purity big mass target material
Schematically VIP-open systems

Search for anomalous electronic transitions in Cu
induced by a circulating current
introduced electrons interact with the valence electrons
search transition from 2p to 1s already filled by 2 electrons
alternated to X-ray background measurements without current

Undesired result:

[Diagram with X-ray detector, DAQ, Cu strip, Power Supply]
VIP Experiment & LNGS

1400 m rock coverage

A reduction factor of one million in the cosmic ray flux
VIP Experiment & LNGS

VIP setup:

a) copper ultrapure cylindrical foil
b) surrounded by 16 Charge Coupled Devices (CCD)
c) inside a vacuum chamber: CCDs cooled to 168K by a cryogenic system
d) amplifiers + read out ADC boards.
VIP Experiment

After about 2 years running

\[\beta^2/2 < 4.7 \times 10^{-29} \]

VIP-2 goal 2 OM improvement

subtracted (current on-off) spectrum

VIP-2 goal 2 OM improvement

a) Silicon Drift Detectors (SDDs) → higher resolution (190 eV FWHM at 8.0 keV), faster (triggerable) detectors. 4 arrays of 2 x 4 SDDs 8mm x 8mm each, liquid argon closed circuit cooling - 170 °C

Fig. 1 The side views of the design of the core components of the VIP-2 setup, including the SDDs as the X-ray detector, the scintillators as active shielding with silicon photomultiplier readout.
b) VETO system \rightarrow (32 plastic scintillators + SiPMs read out) \rightarrow rejection of background (high energy charged particles) from outside the detector

32 scintillators (blue) read out by two Silicon Photomultipliers each, are installed around the SDDs to give an active veto signal.
b) 2 strip shaped Cu targets (25 μm x 7 cm x 2 cm) more compact target → higher acceptance, thinner → higher efficiency

DC current supply to Cu bars

d) Cu strips cooled by a closed Fryka chiller circuit → higher current (100 A) @ 20 °C of Cu target implies 1 °K heating in SDDs
VIP-2 goal 2 OM improvement

e) quick (one hour) resolution and energy calibration. X-ray tube irradiates zirconium & titanium

- SDD calibration spectrum at 125 K
- Energy resolution 150 eV (FWHM) for Mn Kα
VIP-2 goal 2 OM improvement

Passive shielding → two layers, copper inside lead outside
VIP-2 final configuration

Upgrade concluded in April 2019:
VIP-2 (open system) preliminary results
Upper limit on the PEP violation probability is obtained extracting the p.d.f. of the expected violation signal contribution S:

$$p(S, B | \text{data}) = \frac{p(\text{data} | S, B) \cdot p_0(S) \cdot p_0(B)}{\int p(\text{data} | S, B) \cdot p_0(S) \cdot p_0(B) dS dB}.$$

Joint p.d.f.
Bin contents fluctuate around the mean according to a Pois. Dist.

$$P(\text{data} | S, B) = \prod_{i=1}^{N} \frac{\lambda_i(S, B)^{n_i} \cdot e^{-\lambda_i(S, B)}}{n_i!}.$$

Posterior p.d.f. (model needs in input the bkg. and sig. normalised shapes):

$$P(S | \text{data}) = \int P(S, B | \text{data}) dB$$

$$\lambda_i = \lambda_i(S, B) = S \cdot \int_{\Delta E_i} f_S(E) dE + B \cdot \int_{\Delta E_i} f_B(E) dE,$$

Background \rightarrow fit of the bkg spectrum. Signal \rightarrow theory convoluted with exp. resolution
The prior probability for S is flat up to a maximum S_{max} consistent with existing limits [Eur. Phys. J. C (2018) 78:319].

The mean value for the expected number of bkg. Events μ_b obtained from bkg. Spectrum. Prior is Gaussian with a width $\sigma_b = \mu_b/2$.

Posterior from Markov chain Monte Carlo calculation:

From which an upper limit on the PEP violation probability is obtained (90% Probability):

$$\frac{\beta^2}{2} < \frac{\bar{S}}{N_{\text{free}} \cdot N_{\text{int}} \cdot P_{\text{cpt}} \cdot \epsilon_{\text{tot}}}$$

$\beta^2/2 < 9.9 \cdot 10^{-31}$

Non-commutative space-time induced PEP violation
VIP-closed systems
A new paradigm in experimental tests of quantum gravity models

Are Quantum Gravity models experimentally testable?

A. Addazi (Chengdu Univ.) A. Marcianò (Fudan University)

VIP-2 underground experiment as a Crash-Test of Non-Commutative Quantum Gravity

Pauli Exclusion Principle (PEP) violations induced from non-commutative space-time can be searched VIP-2 experiment set-up. We show that the limit from VIP-2 experiments on non-commutative space-time scale Λ, related to energy dependent PEP violations, are severe: κ-Poincaré non-commutativity is ruled-out up to the Planck scale. In the next future θ-Poincaré will be probed until the Grand-Unification scale! This highly motivates Pauli Exclusion Principle tests from underground experiments as a test of quantum gravity and space-time microscopic structure.

See also A. Addazi et al., 2018 Chinese Phys. C 42 094001, arXiv:1712.08082 [hep-th]
PEP violation in quantum gravity

Quantum gravity models can embed PEP violating transitions!

PEP is a consequence of the spin statistics theorem based on: Lorentz/Poincaré and CPT symmetries; locality; unitarity and causality. Deeply related to the very same nature of space and time

most effective theories of QG foresee the non-commutativity of the space-time quantum operators (e.g. \(k\)-Poincarè, \(\theta\)-Poincarè)

non-commutativity induces a deformation of the Lorentz symmetry and of the locality → naturally encodes the violation of PEP

S. Majid, Hopf algebras for physics at the Planck scale, Class. Quantum Grav. 5 (1988) 1587.

PEP violation is suppressed with \((E/\Lambda)^n\), \(n\) depends on the specific model, \(E\) is the energy of the PEP violating transition, \(\Lambda\) is the scale of the space-time non-commutativity emergence.
Differences of θ-Poincarè w. r. to effective models:

- does not respect the M-G superselection rule (transition amplitude from a state of two different fermions to a state of two identical fermions is not zero) →

can be tested with closed systems (ex. using conduction electrons in the conductor as test electrons, no current);

- the violation probability depends on the PEP violating process transition energy (suppressed with the non-commutativity energy scale) →

it is important to test different atomic species → different Z → different ΔE for the measured transition;

Preliminary test was already performed for 82Pb, we plan to repeat with other elements (73Ta, 23V ...)
High purity Ge detector measurement:

- Ge detector surrounded by roman lead target + complex electrolytic Cu + Pb shielding

- 10B-polyethylene plates reduce the neutron flux towards the detector

- shield + cryostat enclosed in air tight steel housing flushed with nitrogen to avoid contact with external air (and thus radon).

To appear in EPJ C
Extremely low statistics in the two ROI regions compatible with the mean bkg: $b = 4.4$ counts/keV

The prior probability for the number of expected signal events is assumed flat up to a maximum S_{max} consistent with existing limits [Eur. Phys. J. C (2018) 78:319].

$$p_0(S) = \begin{cases} \frac{1}{S_{\text{max}}} & 0 \leq S \leq S_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

Transitions in Pb

<table>
<thead>
<tr>
<th>Transition</th>
<th>forb.</th>
<th>allow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1s - 2p_{3/2} K_{\alpha 1}$</td>
<td>73713</td>
<td>74961</td>
</tr>
<tr>
<td>$1s - 2p_{1/2} K_{\alpha 2}$</td>
<td>71652</td>
<td>72798</td>
</tr>
</tbody>
</table>
From which an upper limit on the PEP violation probability is obtained (90% Probability):

\[\delta^2 = \frac{\beta^2}{2} < \frac{\tilde{S}_1 + \tilde{S}_2}{\epsilon_{tot} \cdot N_{free} \cdot (\frac{\Delta t_1 + \Delta t_2}{\tau_E}) + \epsilon_{tot} \cdot N_{Pb} \cdot (\frac{\Delta t_1 + \Delta t_2}{\tau_0})} \]

\[\delta^2 < 3.1 \cdot 10^{-46} \]

- **K-Poincarè** - excluded up to \(\Lambda > 10^{22} \) Planck scale
- **θ-Poincarè** - excluded up to \(\Lambda > 0.3 \) Planck scale
spontaneous radiation – X-ray test for collapse models
Dynamical Reduction Models:

- CSL – non-linear and stochastic modification of the Schrödinger equation ...

\[d|\psi_t\rangle = \left[-\frac{i}{\hbar}Hdt + \sqrt{\lambda} \int d^3x (N(x) - \langle N(x) \rangle_t) dW_t(x) - \frac{\lambda}{2} \int d^3x (N(x) - \langle N(x) \rangle_t)^2 dt \right] |\psi_t\rangle \]

System’s Hamiltonian

NEW COLLAPSE TERMS

New Physics

- CSL – collapse strength \(\lambda \sim 10^{-7} \text{ m} \) – correlation length \(\rho_c \sim 10^{-7} \text{ m} \)

\(\lambda \) - collapse strength measures the strength of the collapse strongly debated, see e.g. S. L. Adler, JPA 40, (2007) 2935

- Diosi – Penrose – gravity related collapse model ...

system is in a quantum superposition of two different positions \(\rightarrow \)
superposition of two different space-times is generated \(\rightarrow \)
the more massive the superposition, the faster it is suppressed.

The model characteristic parameter \(R_0 \) prediction \(\sim 1 \text{ fm} \)
both models induce a diffusion motion for the wave packet:

each time a collapse occurs the center of mass is shifted towards the localized wave function position. Since the process is random this results in a diffusion process.

spontaneous emission (A. Bassi & S. Donadi)

- CSL – s. e. photons rate:

\[
d\Gamma' \over dE = \left\{ \left(N_p^2 + N_e \right) \cdot (N_a T) \right\} \frac{\lambda \hbar e^2}{4\pi^2\varepsilon_0 c^3 m_0 r_C^2 E}
\]

- Diosi – Penrose – s. e. photons rate:

\[
d\Gamma_t \over d\omega = \frac{2}{3} \frac{G e^2 N^2 N_a}{\pi^{3/2}\varepsilon_0 c^3 R^3_0 \omega'}
\]

HPGe detector based experiment @ LNGS

- shield + cryostat enclosed in air tight steel housing flushed with nitrogen to avoid contact with radon.

![Figure 1: Schematic representation of the experimental setup: 1 - Ge crystal, 2 - Electric contact, 3 - Plastic insulator, 4 - Copper cup, 5 - Copper end-cup, 6 - Copper block and plate, 7 - Inner Copper shield, 8 - Lead shield.](image-url)
three months data taking with 2kg Germanium active mass

the pdf of the models parameters is obtained within a Bayesian model:

\[p(\Lambda_c|p(z_c|\Lambda_c)) = \frac{\Lambda_c^z e^{-\Lambda_c} \theta(\Lambda_c^{\max} - \Lambda_c)}{\int_0^{\Lambda_c^{\max}} \Lambda_c^z e^{-\Lambda_c} d\Lambda_c} \]

\[R_0 > 0.54 \times 10^{-10} \text{ m} \quad 95\% \text{ C. L.} \]

→ Diosi-Penrose excluded

\[\lambda < 5.2 \cdot 10^{-13} \quad 95\% \text{ C. L.} \]
Thanks
Future perspectives

HPGe detector + ultrapure Pb active shielding:

BEGe detector + pulse shape discrimination

pushing the lower E threshold to few keV
The β parameter

\[N_X \geq \frac{1}{2} \beta^2 N_{new} \frac{N_{int}}{10} = \frac{\beta^2 (\Sigma I \Delta t) D}{\rho \sigma} \]

\[\int I(t) \, dt = 15.44 \cdot 10^6 \, C \]

\[T \]

\[D = 0.025 \, m \]
\[m = 3.9 \cdot 10^{-8} \, m \]
\[\rho = 8.96 \cdot 10^3 \, kg \cdot m^{-3} \]
\[s = 10 \, m^2 \cdot kg^{-1} \]
\[z = 1.5 \cdot 10^{-3} \, m \]

\[N_X \geq \beta^2 \left(0.90 \cdot 10^{28} \right) \]
\[\beta^2 / 2 \leq 1.7 \cdot 10^{-26} \, (>95 \, C.L.) \]
The \(\beta \) parameter

Ignatiev & Kuzmin model creation and destruction operators connect 3 states

- the vacuum state \(|0\rangle \)
- the single occupancy state \(|1\rangle \)
- the non-standard double occupancy state \(|2\rangle \)

through the following relations:

\[
\begin{align*}
 a^+ |0\rangle |1\rangle &= \beta |2\rangle \\
 a^+ |1\rangle &= \beta |2\rangle \\
 a^+ |1\rangle &= \beta |2\rangle \\
 a |0\rangle |0\rangle &= a |1\rangle \\
 a |1\rangle &= \beta |1\rangle
\end{align*}
\]

The parameter \(\beta \) quantifies the degree of violation in the transition.

\(|1\rangle \rightarrow |2\rangle \)

It is very small and for \(\beta \rightarrow 0 \) we recover the Fermi - Dirac statistic.
The β parameter

This β can be simply related to the q parameter of the quon theory of Greenberg and Mohapatra

$$\frac{1}{2} \beta^2 = \frac{1 + q}{2}$$

Quon algebra is a sort of weighted average between fermion and boson algebra:

$$\frac{1 + q}{2} \begin{array}{c} a_k, a_l^+ \end{array} - \frac{1 - q}{2} \begin{array}{c} a_k, a_l^+ \end{array} = \delta_{kl}$$

Or also

$$a_k a_l^+ - qa_l^+ a_k = \delta_{kl}$$
Best Limits for PEP Violation

<table>
<thead>
<tr>
<th>Nuclear transition</th>
<th>$^{12}C \rightarrow ^{11}B + p$</th>
<th>BOREXINO</th>
<th>$\frac{\beta^2}{2} < 7.4 \cdot 10^{-60}$</th>
<th>G. Bellini et al., PRC 81 (2010) 034,317</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic transition</td>
<td>$I \rightarrow I + \gamma$</td>
<td>DAMA</td>
<td>$\frac{\beta^2}{2} < 1.28 \cdot 10^{-47}$</td>
<td>R. Bernabei et al., Eur. Phys. J. C62 (2009) 327</td>
</tr>
<tr>
<td></td>
<td>$Ge \rightarrow Ge + \gamma$</td>
<td>MALBEK</td>
<td>$\frac{\beta^2}{2} < 2.92 \cdot 10^{-47}$</td>
<td>N. Abgrall et al., Eur. Phys. J. C (2016) 76.</td>
</tr>
</tbody>
</table>

However: Stable system transitions!

New experimental limits on the Pauli-forbidden transitions in ^{12}C nuclei obtained with 485 days Borexino data.
PEP Tests with atomic transitions

From S.R. Elliott et al., Found. Phys. 42 (2012) 1015

<table>
<thead>
<tr>
<th>Process</th>
<th>Type</th>
<th>Experimental limit</th>
<th>(\frac{1}{2}\beta^2) limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta^- + \text{Pb} \rightarrow \bar{\text{Pb}})</td>
<td>Ia</td>
<td></td>
<td>(3 \times 10^{-2})</td>
</tr>
<tr>
<td>(e^{-}_{p} + \text{Ge} \rightarrow \bar{\text{Ge}})</td>
<td>Ia</td>
<td></td>
<td>(1.4 \times 10^{-3})</td>
</tr>
<tr>
<td>(e^{-}_{I} + \text{Cu} \rightarrow \bar{\text{Cu}})</td>
<td>II</td>
<td></td>
<td>(1.7 \times 10^{-26})</td>
</tr>
<tr>
<td>(e^{-}_{I} + \text{Cu} \rightarrow \bar{\text{Cu}})</td>
<td>II</td>
<td></td>
<td>(4.5 \times 10^{-28})</td>
</tr>
<tr>
<td>(e^{-}_{I} + \text{Cu} \rightarrow \bar{\text{Cu}})</td>
<td>II</td>
<td></td>
<td>(6.0 \times 10^{-29})</td>
</tr>
<tr>
<td>(e^{-}_{I} + \text{Pb} \rightarrow \bar{\text{Pb}})</td>
<td>II</td>
<td></td>
<td>(1.5 \times 10^{-27})</td>
</tr>
<tr>
<td>(e^{-}_{f} + \text{Pb} \rightarrow \bar{\text{Pb}})</td>
<td>IIIa</td>
<td></td>
<td>(2.6 \times 10^{-39})</td>
</tr>
<tr>
<td>(I \rightarrow \bar{I} + \text{X-ray})</td>
<td>III</td>
<td>(\tau > 2 \times 10^{27}) sec</td>
<td>(3 \times 10^{-44})</td>
</tr>
<tr>
<td>(I \rightarrow \bar{I} + \text{X-ray})</td>
<td>III</td>
<td>(\tau > 4.7 \times 10^{30}) sec</td>
<td>(6.5 \times 10^{-46})</td>
</tr>
</tbody>
</table>

- Recently created fermions interacting with system
- Distant fermions interacting with system
- Stable system transition
LNGS Background studies with Monte-Carlo

Monte Carlo

Data measured
Electron decoherence time at room temperature

The conclusion is that after a time of the order of the *decoherence time* the electron wavefunctions are effectively decoupled and the environment acts on electrons by enforcing an effective locality.
Improved experiment VIP2

- Large (1 cm2) SDDs provide excellent energy resolution (even superior than CCDs at 8keV)
- Timing capability for triggering
- Compact design suitable for gaining larger solid angle
- Successfully used in the detection of kaonic atom x-ray spectroscopy at DAFNE (SIDDHARTA) with large background reduction
Comparison MC and Data @ LNGS

Monte Carlo simulation of 30 days data taking and actual data taken in 30 days
Future Research Plan

- Installation of part of the passive shielding

- New SDD detector system with new copper target

- In 2017 new copper target with new SDDs will be installed

- Optimized shielding with data taking of about 3 years (i.e. approx. 2020)

- Goal after 3 years data taking with and without current
 \[10^2 \text{ improvement of VIP limit} \]
Toward the final result

VIP result

VIP2 current result

VIP2 final result - no upgrade

VIP2 final result - with upgrade
pre-VIP-2 (w.o. shielding) results

The data measured at LNGS with current (red) and without current (blue) on the left side. The subtracted spectrum is shown on the right. No excess of events is found in the region of interest (ROI - grey) of the searched PEP violating.

3s of the subtracted number of counts in the ROI

\[\Delta N_x \geq \frac{\beta^2}{2} \frac{1}{10} \frac{D \sum (l \Delta t)}{\mu e} \] (detection efficiency)

\[\frac{\beta^2}{2} \leq \frac{10 \mu e}{D \sum (l \Delta t)} \frac{\Delta N_x}{(\text{detection efficiency})} \]

mean free path \(\mu \)	target length \(D \)	current \(l \)	data taking time \(\Delta t \)	detection efficiency
3.91 \(\times 10^{-6} \) cm | 7.1 cm | 100 A | 81 days 10 hours | 1.82 %

factor 2.5 gain respect to VIP
pre-VIP-2 (w.o. shielding) results

Same data set - simultaneous fit of the “sig + bkg” and bkg spectra, in order to use all the information available for the background shape from the data. The obtained fits:

Fig. 8 A global chi-square function was used to fit simultaneously the spectra with and without 100 A current applied to the copper conductor. The energy position for the expected PEP violating events is about 300 eV below the normal copper $K_{\alpha 1}$ transition. The Gaussian function and the tail part of the $K_{\alpha 1}$ components and the continuous background from the fit result are also plotted. (a): the fit to the wide energy range from 3.5 keV to 11 keV; (b): the fit and its residual for the 7 keV to 11 keV range where there is no background coming from the calibration source.
pre-VIP-2 (w.o. shielding) results

Details of the analysis can be found in:

https://doi.org/10.1140/epjc/s10052-018-5802-4

Experimental search for the violation of Pauli exclusion principle

VIP-2 Collaboration

Present limit with all the pre-VIP2 collected statistics:

\[
\frac{\beta^2}{2} \leq \frac{3 \times 82}{1.46 \times 10^{31}} = 1.69 \times 10^{-29}
\]
Deeper investigation of the electrons diffusion and interaction in a bulk-matter:

On the Importance of Electron Diffusion in a Bulk-Matter
Test of the Pauli Exclusion Principle, Entropy 2018, 20(7), 515;
https://doi.org/10.3390/e20070515:

The random walks of the electrons as they move from the entrance to the exit of the copper sample is fully described in terms of a diffusion transport model.
relax the definition of *new* (fermion – fermion system interaction)
giving rise to violating ψ_{sym}.

Exploit free electrons in a conductor (Pb is ideal) → specific electron – specific atom interactions are so rare $\sim 10^4$ ys each interaction is a new PEP test

\[
\frac{1}{2} \beta^2 < \frac{N_{3\sigma}}{\epsilon_{\text{tot}}} \frac{1}{P_{\text{cpt}} N_{\text{new}} f_{\text{free}} N_{\text{int}}^f}
\]

where N_{int}^f and N_{new}^f are given by

\[
N_{\text{int}}^f = \Delta t \frac{u_f}{\mu}
\]
\[
N_{\text{new}}^f = N_e V
\]
VIP lead with HPGe & LNGS

High purity Ge detector measurement:

- Ge detector surrounded by roman lead target + complex electrolytic Cu + Pb shielding
- 10B-polyethylene plates reduce the neutron flux towards the detector
- shield + cryostat enclosed in air tight steel housing flushed with nitrogen to avoid contact with external air (and thus radon).
What does rare interactions mean? How many “violating electrons” in the roman lead block could already do violating transitions?

\[P(k) = \frac{(T/N\tau)^k}{k!} \exp(-T/N\tau), \quad \Rightarrow \quad p = P(0) = \exp(-T/N\tau), \]

\[p = \exp(-T/N\tau) + (1 - P_{\text{cpt}}) \frac{(T/N\tau)}{1!} \exp(-T/N\tau) + \cdots + (1 - P_{\text{cpt}})^k \frac{(T/N\tau)^k}{k!} \exp(-T/N\tau) + \cdots \]

\[= \sum_{k=0}^{k=\infty} (1 - P_{\text{cpt}})^k \frac{(-T/N\tau)^k}{k!} \exp(-T/N\tau) \]

\[= \exp \left[-T/(N\tau/P_{\text{cpt}}) \right], \]

so the PEP violation probability is to be corrected accordingly:

\[\frac{\beta^2}{2} \exp(-T_i P_{\text{cpt}}/N\tau) < \frac{N_X}{\epsilon_{\text{tot}} P_{\text{cpt}} N_{\text{free}} N_{\text{int}}} \]

considering our 119 moles of roman Pb samples:

\[\exp(-T_i P_{\text{cpt}}/N\tau) \approx 1. \]
VIP lead with HPGe & LNGS

Extremely low statistics in the two ROI regions compatible with the mean bkg: $b = 4.4$ counts/keV

<table>
<thead>
<tr>
<th>Transitions in Pb</th>
<th>forb.</th>
<th>allow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1s - 2p_{3/2}$ K_{a1}</td>
<td>73713</td>
<td>74961</td>
</tr>
<tr>
<td>$1s - 2p_{1/2}$ K_{a2}</td>
<td>71652</td>
<td>72798</td>
</tr>
</tbody>
</table>

The p value (probability of having measured an excess with respect to b in the two ROIs):

$$p = \sum_{j=z_1+1}^{\infty} \frac{b^{z_1}}{z_1!} \exp(-b) \sum_{j=z_2+1}^{\infty} \frac{b^{z_2}}{z_2!} \exp(-b) = \left[1 - \sum_{j=0}^{z_1} \frac{b^{z_1}}{z_1!} \exp(-b) \right] \left[1 - \sum_{j=0}^{z_2} \frac{b^{z_2}}{z_2!} \exp(-b) \right]$$

$p = 0.051$ corresponding to 1.95 standard deviations.

$$\frac{1}{2} \beta^2 < 1.58 \cdot 10^{-40}$$

Factor 16 better then Elliott

Figure 1. Total measured X-ray spectrum (left); same spectrum in the region of the K_a standard and violating transitions in Pb (right).