Baryon fluctuations in Extended linear sigma model

Baryon fluctuations in ELSM

- Motivations.
- Extended linear sigma model and its thermodynamics.
- Baryon fluctuations in the ${\rm EL}\sigma{\rm M}.$
- (Axial) vector curvature masses.
- Outlook.

æ

Motivation

Critical end point

The phase structure of the strongly interacting matter, especially the region of chiral phase transition, is a heavily studied field of particle physics.

- There might be a first order phase transition.
- At $\mu_q = 0$ there is a crossover according to lattice calculations.
- There is a Critical end point (CEP) between the two regions.
- Effective models shows the existence of a CEP.
- The upcomming FAIR experiment will hopefully give insight into the energy region, where the CEP might be. PS 94, no. 3, 033001 (2019)

Motivation

Uncertainty of CEP

Figure: Location of CEP according to different models and the freeze-out line for comparison. The shadowed region and the vertical lines corresponds to lower limits of the CEP.

Budapest-Wupperal	Phys. Lett. B 751 , 559 (2015)	Phenix	Phys. Rev. C 93 , no. 1, 011901 (2016)	
HotQCD	Phys. Lett. B 795 , 15 (2019)	Freezout	J. Phys. G 32 , S165 (2006)	
			・ロト (四) (注) (注) (注) (注) ()	0

Extended linear sigma model

Already existing model, published in: Phys. Rev. D 93, no. 11, 114014 (2016).

- Linear sigma model with full Scalar, Pseudoscalar, Vector and Axialvector nonets.
- Isospin symmetric case: 16 mesonic degrees of freedom.
- The Lagrangian build up from the fields

$$L^{\mu} = \sum_{a} \left(V_{a}^{\mu} + A_{a}^{\mu} \right) T_{a}, \quad R^{\mu} = \sum_{a} \left(V_{a}^{\mu} - A_{a}^{\mu} \right) T_{a}, \quad M = \sum_{a} \left(S_{a} + iP_{a} \right) T_{a},$$

with terms up to fourth order, taking care of the symmetry properties.

• Constituent quarks (2+1 flavors) are included in a Yukawa type term,

$$\mathcal{L}_{Yukawa} = \bar{\psi} \left[i \gamma_{\mu} D^{\mu} - \mathcal{M} \right] \psi,$$

where $\mathcal{M} = g_F (\mathbb{1}M_S + i\gamma_5 M_P)$ is the quark mass matrix and $M_S = \sum_a S_a T^a, M_P = \sum_a P_a T^a$.

Extended linear sigma model

- The (15) parameters of the Lagrangian are fitted with χ^2 test. The used (30) physical parameters are the (pseudo)scalar meson masses, decay widths and the $T_C(\mu = 0)$ critical temperature, getting from lattice simulations.
- $\bullet\,$ All parameters and the fitting procedure can be found in $\,$ PRD $93,\,{\rm no.}\,$ 11, 114014 (2016) .
- $\bullet\,$ In the 0-8 sector N/S bases is used

$$\xi_N = \frac{1}{\sqrt{3}} \left(\sqrt{2}\xi_0 + \xi_8 \right) \qquad \xi_S = \frac{1}{\sqrt{3}} \left(\xi_0 - \sqrt{2}\xi_8 \right).$$

- Due to SSB fields can be written as φ(x) := φ + φ'(x), where φ'(x) has no vacuum expectation value (vev).
 Only the scalar-isoscalar sector has nonzero vev denoted as: φ_N, φ_S.
- Including Polyakov loop variables $\langle \Phi \rangle, \langle \bar{\Phi} \rangle$ as further order parameters, which mimic the deconfinment phase transition.

イロト 不良 とうせい きょうしょう

Grand potential

Assumptions

- Symmetric quark matter: $\mu_u = \mu_d = \mu_s = \mu_q = \mu_B/3$
- Fermionic determinant calculated with neglecting mesonic fluctuations, ie. (pseudo)scalar mesons treated at tree-level only.

The Grand potential reads

$$\Omega(T,\mu_q) = U(\langle M \rangle) + U(\langle \Phi \rangle, \langle \bar{\Phi} \rangle) + \Omega^{(0)}_{\bar{q}q}(T,\mu_q)$$

where the terms are the tree-level mesonic potential, the Polyakov loop potential, and the contribution of fermionic fluctuations respectively.

Field equations

$$\frac{\partial\Omega}{\partial\bar{\Phi}} = \frac{\partial\Omega}{\partial\Phi} = \frac{\partial\Omega}{\partial\phi_N} = \frac{\partial\Omega}{\partial\phi_S} = 0$$

Solutions in T and μ_B

- We need initial values for solving the field equations. It is possible at $T = \mu_B = 0$.
- Move into finite T (or μ_B), using the last solutions as initial values.

• One can calculate the pressure as $p(T, \mu_B) = \Omega(T = 0, \mu_B) - \Omega(T, \mu_B)$ for fixed μ_B as a function of temperature.

Baryon fluctuations

- One need quantities accessible both from measurements and theoretical calculations and are sensitive to the critical behavior.
- Baryon number fluctuations (ratios, such as kurtosis).

One can characterize the baryon fluctuations with the susceptibilities. Baryon number susceptibilities

$$\chi_n^B = \frac{\partial^n p / T^4}{\partial \left(\mu_B / T\right)^n} = T^{n-4} \frac{\partial^n p}{\partial \mu_B^n}$$

Ratios of susceptibilities do not include (static) finite volume effect. Finite volume fluctuations still should be included from the theoretical side.

Baryon fluctuations

The (excess) kurtosis can be written as the ratio of the fourth and the square of the second order cumulants (variance),

$$\kappa = \frac{m_4}{m_2^2} = \frac{m_4}{m_2\sigma_2} = \frac{\chi_4}{\chi_2\sigma_2}$$

 κ can be rewritten with the number susceptibilities (in the grand canonical ensemble). Thus often the ratio of susceptibilities defined as kurtosis.

Kurtosis

$$\sigma_2 \kappa = \frac{\chi_4}{\chi_2}$$

Further ratios can be defined. χ_3/χ_1 (skewness), χ_4/χ_2 (kurtosis), χ_6/χ_2 , χ_8/χ_2 has higher importance in lattice calculations by the continuum extrapolation. Thus, these are good quantities to compare effective models with lattice results.

Calculation of μ_B derivatives

In T running: finite difference method or polynomial.

In μ_B running: directly from interpolation (spline or polynomial).

Results for cumulants

Figure: χ_2^B as the function of temperature in the extended linear sigma model, in the chiral matrix model, and in lattice calculations (left). The temperature dependence of χ_4^B compared again with the chiral matrix model and lattice data (right).

Chiral matrix model: Phys. Rev. D 94, no. 3, 034015 (2016)

Results for cumulants

Figure: $\chi_2^B - \chi_4^B$ (left) in the extended linear sigma model, in the chiral matrix model, and in lattice calculations. The order parameters of ELSM (right).

æ

Results: kurtosis

Figure: Kurtosis in the extended linear sigma model (left) compared with lattice data (right) as a function of temperature. The insert shows, how the kurtosis reaches the HRG and free quark gas limits in $EL\sigma M$.

Lattice: Phys. Rev. D 95, no. 5, 054504 (2017)

Baryon fluctuations

In finite baryon chemical potential

Figure: 3D plot of the kurtosis.

In finite μ_B

Figure: χ_4 (left) and the kurtosis (right) in finite μ_B , in the EL σ M (top) and in FRG calulation (bottom). Phys. Rev. D **100**, no. 9, 094029 (2019)

æ

In finite μ_B

Figure: The pressure and the kurtosis at $T_I = 0.9$ GeV.

æ

Curvature masses

Curvature meson masses

$$m_{i,ab}^2 = \left. \frac{\partial^2 \Omega(T,\mu)}{\partial \varphi_{i,a} \partial \varphi_{i,b}} \right|_{\{\varphi_j=0\}_j} = \mathfrak{m}_{i,ab}^2 + \Delta m_{i,ab}^2 + \delta m_{i,ab}^2$$

The three terms are the tree-level mass and the corrections coming from the fermionic vacuum and thermal fluctuations, respectively. $a, b \in \{0, ..., 8\}$

- i = S, P firstly calculated by Schaefer and Wagner in PRD 79, 014018 (2009)
- i = V, A: a work in progress.

Recall the grand potential

 $U(\langle M \rangle)$ depends on the (up to fourth order of) scalar-isoscalar background and the parameters of the Lagrangian. It also contains the counterterms for the renormalization of the fermionic contribution. $U(\langle \Phi \rangle, \langle \bar{\Phi} \rangle)$ depends only on the Polyakov loop parameters. $\Omega_{\bar{q}q}^{(0)}(T, \mu_q)$ coming from the fermion determinant. It can be written as

$$\Omega_{\bar{q}q}^{(0)}(T,\mu_q) = \Omega_{\bar{q}q}^{(0)v} + \Omega_{\bar{q}q}^{(0)T}(T,\mu_q)$$

where v denotes the zero temperature vacuum part, while T refers to the thermal part.

イロト イロト イヨト イヨト 三日

Curvature masses

Derivatives of vacuum and thermal part of $\Omega^{(0)}_{\bar{q}q}(T,\mu_q)$:

$$\begin{split} \Delta m_{i,ab,\nu}^2 &= \frac{-3}{8\pi^2} \sum_{f=u,d,s} \left[\left(\frac{3}{2} + \log \frac{m_f^2}{M_0^2} \right) m_{f,a,\mu}^{2(i)} m_{f,b,\mu}^{2(i)} + m_f^2 \left(\frac{1}{2} \log \frac{m_f^2}{M_0^2} \right) m_{f,ab,\mu}^{2(i)} \right] \\ \delta m_{i,ab,\nu}^2 &= 6 \sum_{f=u,d,s} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_f(p)} \left[\left(f_f^+(p) + f_f^-(p) \right) \left(m_{f,ab,\mu}^{2(i)} - \frac{m_{f,a,\mu}^{2(i)} m_{f,b,\mu}^{2(i)}}{2E_f^2(p)} \right) \right. \\ & \left. + \left(B_f^+(p) + B_f^-(p) \right) \frac{m_{f,a,\mu}^{2(i)} m_{f,b,\mu}^{2(i)}}{2TE_f(p)} \right] \end{split}$$

where

$$f_{f}^{\pm}(p) = \frac{\Phi^{\pm}e^{-\beta E_{f}^{\pm}(p)} + 2\Phi^{\mp}e^{-2\beta E_{f}^{\pm}(p)} + e^{-3\beta E_{f}^{\pm}(p)}}{1 + 3\left(\Phi^{\pm} + \Phi^{\mp}e^{-\beta E_{f}^{\pm}(p)}\right)e^{-\beta E_{f}^{\pm}(p)} + e^{-3\beta E_{f}^{\pm}(p)}}$$

and

$$B_{f}^{\pm}(p) = 3\left(f_{f}^{\pm}(p)\right)^{2} - \frac{\Phi^{\pm}e^{-\beta E_{f}^{\pm}(p)} + 4\Phi^{\mp}e^{-2\beta E_{f}^{\pm}(p)} + 3e^{-3\beta E_{f}^{\pm}(p)}}{1 + 3\left(\Phi^{\pm} + \Phi^{\mp}e^{-\beta E_{f}^{\pm}(p)}\right)e^{-\beta E_{f}^{\pm}(p)} + e^{-3\beta E_{f}^{\pm}(p)}}$$

< □ > < □ > < □ > < □ > < □ > = Ξ

Curvature masses

Derivatives of vacuum and thermal part of $\Omega_{\bar{q}q}^{(0)}(T,\mu_q)$:

$$\begin{split} \Delta m_{i,ab,\nu}^2 &= \frac{-3}{8\pi^2} \sum_{f=u,d,s} \left[\left(\frac{3}{2} + \log \frac{m_f^2}{M_0^2} \right) m_{f,a,\mu}^{2(i)} m_{f,b,\mu}^{2(i)} + m_f^2 \left(\frac{1}{2} \log \frac{m_f^2}{M_0^2} \right) m_{f,ab,\mu}^{2(i)} \right] \\ \delta m_{i,ab,\nu}^2 &= 6 \sum_{f=u,d,s} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_f(p)} \left[\left(f_f^+(p) + f_f^-(p) \right) \left(m_{f,ab,\mu}^{2(i)} - \frac{m_{f,a,\mu}^{2(i)} m_{f,b,\mu}^{2(i)}}{2E_f^2(p)} \right) \right. \\ & \left. + \left(B_f^+(p) + B_f^-(p) \right) \frac{m_{f,a,\mu}^{2(i)} m_{f,b,\mu}^{2(i)}}{2TE_f(p)} \right] \end{split}$$

$$m_{f,a}^{2(i)} \equiv \left. \frac{\partial m_f^2}{\partial \varphi_{i,a}} \right|_{\{\varphi_j = 0\}_j} \qquad m_{f,ab}^{2(i)} \equiv \left. \frac{\partial^2 m_f^2}{\partial \varphi_{i,a} \partial \varphi_{i,b}} \right|_{\{\varphi_j = 0\}_j}$$

・ロト ・四ト ・ヨト ・ヨト 三田

Derivatives in the curvature masses

The fermion mass matrix

$$\mathcal{M} = \gamma_0 \left(\mathbb{1}M_S + \gamma_5 M_P + \gamma_\mu V^\mu + \gamma_\mu \gamma_5 A^\mu \right)$$

æ

Derivatives in the curvature masses

The fermion mass matrix

$$\mathcal{M} = \gamma_0 \left(\mathbb{1}M_S + \gamma_5 M_P + \gamma_\mu V^\mu + \gamma_\mu \gamma_5 A^\mu \right)$$

(i)	ab	$m_{l,ab}^{2(i)\mu}$	$m_{s,ab}^{2(i)\mu}$
V	11	g_V^2	0
	NN	g_V^2	0
	\mathbf{SS}	0	g_V^2

イロト イヨト イヨト イヨト

Figure: Vector masses with different couplings.

Zimányi School 2019

æ

Summary and outlook

- $EL\sigma M$ with Polyakow loop. Gives CEP at (885, 52.7) MeV.
- Baryon fluctuations and Kurtosis results are close to lattice data in $\mu_B = 0$ and can be calculated in finite μ_B .

Ways of improvement

- Improve the calculation of derivatives with respect to μ_B.
- To compere to experimental results further improvements needed. (Like finite volume effects)
- Extend the approximation for the field equation and the curvature masses selfconsistently. (Including meson fluctuations)

