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An	Overview	
•  Introduc@on	

– Some	cau@ons	
– Standard	results	
– Assump@ons	

•  Some	surprises	
– A	metastable	supercooled	phase	with	nega%ve	
absolute	pressure.		

– A	clean	demonstra@on	of	a	strongly	coupled	
regime	of	plasma.		

– Peculiar	behavior	at	the	endpoint	of	the	hadronic	
phase;	existence	of	locally	unstable	but	long-lived		
regime.		
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A	Mo8o	for	1/Nc	prac@@oners		

We may well be 
wrong but at 
least we are 
systematic 
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We may well be 
wrong but at 
least we are 
systematic 

To	the	extent	that	1/Nc	correc%ons	are	modest,	the	large	Nc	world	may	be	a	
useful	cartoon	version	of	the	physical	world.	

However	thermodynamic	proper%es	around	phase	transi%ons	or	rapid	cross-
overs	are	likely	to	be	cases	where	the	cartoon	is	insufficient.				
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A	crossover	for	Nc=3	can	become	
increasing	sharp	as	Nc		increases	and	as	
it	goes	to	∞,	the	qualita%ve	behavior	
can	change	from	being	a	crossover	to	a	
first	order	transi%on—a	qualita%vely	
different	behavior.	
	
This	is	precisely	what	we	believe	
happens	for	QCD.	
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A	crossover	for	Nc=3	can	become	
increasing	sharp	as	Nc		increases	and	as	
it	goes	to	∞,	the	qualita%ve	behavior	
can	change	from	being	a	crossover	to	a	
first	order	transi%on—a	qualita%vely	
different	behavior.	
	
This	is	precisely	what	we	believe	
happens	for	QCD.	

Despite	the	qualita%ve	differences	there	
may	be	useful	insights	by	considering	the	
large		Nc	limit.			 5	



Some	standard	large	Nc	results	(Wi8en,	‘t	HooW	1970s)	
– Mesons	and	glueballs	exist	as	unmixed	narrow	states	with	
masses	of	order	unity	in	a	1/Nc

	expansion:	
		mmeson	~		Nc

0			,	mglueball	~		Nc
0				

	

– Meson-meson,	meson-glueball	and	glueball-glueball	
interac@ons	vanish	as	Nc	è∞	.		A	coupling	of	with	nm	
mesons	and		ng		glueballs	scales	as																									.			

•  Widths	scales:		Γmeson	~		Nc
-1			,				Γglueball	~		Nc

-2				

•  Meson-meson	&	meson-glueballl	cross-sec@on	scales	as	~		Nc
-1			

•  glueball-glueballl	cross-sec@on	scales	as	~		Nc
-2			

	
–  There	are	an	infinite	number	of	glueballs	and	mesons	
with	any	given	fixed	quantum	numbers	as	Nc	è∞	

	
–  Baryons	have	masses	that	scale	as			mbaryon	~		Nc

1		

Nc
(1−ng−12nm+δ0 ,nm )
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Some	standard	large	Nc	thermodynamic	results:	
	

–  Previous	results	imply	that	in	a	hadronic	phase	the	
system	becomes	a	weakly	coupled	hadronic	gas	
composed	of	mesons	and	glueballs	with	the	energy	
density	scaling	as		~	Nc

0		

–  RG	analysis	indicates	that	the	QCD	becomes	weakly	
coupled	at	a	momentum	transfer	that	scales	as	~	Nc

0	.	

•  The	system	enters	a	quark-gluon	plasma	regime	at	temperature	
that	scales	as	~	Nc

0		.		
•  The	energy	density	and	entropy	density	in	the	quark-gluon	
plasma	regime	scale	as	~	Nc

2		:		s(ε)=Nc
2	f(ε/Nc

2)		
–  The	discrepancy	between	the	Nc

0	behavior	in	the	hadronic	
regime	and	the	Nc

2	behavior	in	the	plasma	regime	implies	
that	there	must	be	a	phase	transi%on	(first	or	second	
order)—at	least	as	Nc	è∞	.	
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Some	standard	large	Nc	thermodynamic	results:	
	

–  There	is	a	strong	reason	to	believe	that	this	phase	
transi@on	should	be	first	order.	

•  In	the	large	Nc	limit	quark	loops	are	suppressed.		Thus	one	
expects	the	thermodynamics	of	QCD	to	become	equivalent	to	
Yang-Mills	as	Nc		gets	large.	

•  Yang	Mills	is	known	to	known	to	have	a	first	transi@on	at		Nc=3.	
•  Laece	simula@ons	by	the	Oxford	Group	(Teper	and	
collaborators)	in	the	early	2000s	indicate	that	the	first	order	
transi@on	persists	at	larger	Nc		with		latent	hear	growing		as	Nc

2		
as	one	would	expect	if	the	first-order	transi@on	persisted	up	to	
infinity.	

	

Throughout	this	talk,	it	will	be	assumed	that	a	first	
order	transi%on	exists	between	a	hadron	and	plasma	
phase	

8	
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Inhomogeneous	medium	
thermodynamically	preferred	
	

•  This	talk	will	use	the	microcanonical	ensemble	as	
this	is	the	most	fundamental.		
–  Key	quan@ty	S(E)	where		S(E)	is	the	log	of	the	number	
of	accessible	states	at	E.	

–  	S’(E)=1/T		
–  In	thermodynamic	limit	of	large	volumes	relevant	
quan@@es	are	entropy	density,	s,	and	energy	density	
ε	:	s(ε)	=	Lim	Vè∞	S	(ε V)/V	

–  Thermodynamic	stability	implies		s’’	(ε)≤0.		
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Generic	first	order	transi@on	
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f=	-	P		at	the	phase	transi@on	
where	f	is	the	free	energy	
density	and	P	the	pressure		

Slope	is	1/T1	
where	T1	is	the	
phase	transi@on	
temperature	
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The	1st	order		phase	transi@on	
temperature	is	independent	
of	Nc	

Plasma	phase	

Hadronic	
phase	

The	x-intercept	is	independent	of	Nc.	
This	is	–P	,	the	pressure	at	the	phase	
transi@on.		Thus,	the	phase	
transi@on	pressure	scales	as	Nc

0.	 s(ε)=Nc
2	φ(ε/Nc

2)	

s(ε)=Nc
0	γ(ε/Nc

0)	



Implica@ons	for	the	plasma	phase	

•  The	phase	transi@on	temperature	and	pressure	are	
each	order	Nc

0	(i.e.	independent	of	Nc
0).	

•  But	P=-f=Ts-ε and	in	plasma	phase	s	and	ε 	are	each	
O(Nc

2)	and	T	is		O(Nc
0).		Thus	generically	P	is	

expected	to	be	O(Nc
0).	

•  However,	near	the	phase	transi@on	but	s@ll	in	the		
plasma	phase,	Ts	and	ε 	cancel	almost	exactly,	up	to	
rela@ve	order	Nc

-2.	
•  This	cancela@on	is	rather	remarkable	and	leads	to	
some	quite	surprising	results.	
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about	about	the	nature	of	ma8er	created	in	heavy	ion	collisions	
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–  A	possible	cynical	answer:	RHIC	was	sold	as	a	machine	to	
discover	the	QGP	and	whatever	it	discovered	would	be	
labeled	as	a	QGP!	

A	ques@on	approaching	philosophy:	Is	it	even	possible	
to	find	a	medium	in	any	system	which	is	both	clearly	in	
the	plasma	regime	and	also	clearly	strongly	interac@ng?		
	

–  Yes!	The	high	temperature	phase	of	Large	Nc	QCD	just	
above	the	phase	transi@on	

•  Unlike	QCD	at	Nc=3	,	there	is	a	phase	transi@on	which	cleanly	
delineates	the	hadronic	from	plasma	phases.		The	high	
temperature	phase	is	clearly	a	plasma.	

•  While	there	is	no	prac@cal	way	to	test	η/s	for	this	system	to	
demonstrates	that	the	cons@tuents	were	strongly	interac@ng,	if	
the	plasma	is	composed	of	massless	cons@tuents	(eg.	gluons)	
there	is	another	useful	measure	
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–  Note	that	for	an	noninterac@ng	system	of	massless	
cons@tuents	P=ε/3 so	Ω=ε/(3 P) =1.			

•  Very	weakly	ac@ng	systems	of	massless	cons@tuents	will	thus	have	
close	to	Ω	unity.	

	
•  If	however,																																	the	system	is	clearly	strongly	interac@ng.	

•  Just	above	the	first	order	phase	transi@on	in	the	plasma	phase.	
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At	large	Nc	QCD	unambiguously	is	both	strongly	coupled	
and	in	a	plasma	phase!	
	

This	is	modulo	the	very	reasonable	assump@on	that	a	first	order	
transi@on	persists.	
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•  It	may	be	somewhat	surprising	that	large	Nc	
analysis	gives	a	clean	answer	to	this	ques@on.	

•  However,	it	makes	a	much	more	striking	
predic@on	about	the	supercooled	phase:	
Nega@ve	absolute	pressure.	
– Nega@ve	pressure	absolute	pressure	violates	our	
naïve	kine@c	theory	intui@on	based	on	par@cles	
bouncing	around	in	a	gas.	

– No	go	theorem:	systems	with	no	chemical	poten@als	
of	fixed	densi@es	of	conserved	quan@@es	in	a	stable	
phase	cannot	have	nega@ve	absolute	pressure.	

•  This	follows	from	the	condi@on	s’’	(ε)	≤	0,		and	the	facts	that	
s’(ε)	=T-1,	and	P=-f=Ts-	ε.	

•  But	this	does	not	apply	to	the	supercooled	metastable	
phase.	
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•  Gauge	pressure	is	not	the	pressure	of	a	gauge	theory		the	pressure	
but	rather	the	pressure	read	by	a	pressure	gauge—which	measure	
pressure	rela%ve	to	the	ambient	atmospheric	pressure			
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Nega%ve	absolute	pressure	is	remarkable	
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metastable	
regime	

vacuum	

Thermally	insula%ng	walls	and	piston	

Force	

The	medium	is	not	just	weird—it	sucks!	
The	break	down	of	intui@on	based	on	kine@c	theory,	indicates	that	
whatever	this	medium	is,	the	pressure	is	not	describable	in	terms	of	
par@cles	or	quasipar@cles	that	strike	the	wall	transferring	momentum	
and	impar@ng	an	outward	pressure.		This	requires	a	strongly	coupled	
theory	where	the	quasipar%cle	mo%on	is	not	dominant.	



Why	does	the	supercooled	plasma	have	P<0?	
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2 φ εNc
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0	everywhere	in	the	plasma	regime.	
	
If	Ta<	Tb	,	then		ζ (Ta)<ζ (Tb)	
	

So	if	any	supercooled	plasma	
phase	exists	at	large	Nc	there	
is	a	region	with	T<T1		so	that	
ζ (T)<ζ (T1)=0	:	Thus	P(T)<0		
	

It	has	nega%ve	absolute	
pressure!	

P(T1)	~	O(Nc
0)	where	T1	is	the	

temperature	of	the	first	order	
transi@on.		Thus,	ζ(T1)=0	

s(ε) = Nc
2 φ εNc

−2( ) 1+O(Nc
−2 )( )

T = 1
s '(ε)

P = − f = T s−ε

P(T ) = Nc
2ζ (T )+O(Nc

0 )
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•  There	is	a	caveat.			
– There	must	be	a	supercooled	regime	with	neg@ve	
absolute	pressure	at	large	Nc,	provided	that	a	
metastastable	supercooled	regime	exists.	

– Logically	a	first	order	transi@on	could	exist	in	
which	the	phase	transi@on	point	happens	to	
coincide	with	a	point	of	inflec@on;	if	this	were	to	
happen	no	metastable	regime	would	exist.	

– There	is	no	reason	to	expect	this	to	happen	based	
on	large	Nc	analysis;	and	it	would	be	even	more	
interes@ng	then	nega@ve	absolute	pressure.		

•  So	we	can	conclude	something	cool	happens!	
Either	the	metastable	supercooled	phase	does	
not	exist	or	it	has	nega%ve	absolute	pressure.	



•  The	focus	so	far	has	been	on	the	plasma	phase.		
Are	there	any	surprises	in	the	hadronic	regime?	
	Yes!	

•  The	key	to	understanding	them	is	the	fact	that	
large	Nc	QCD	must	have	a	Hagedorn	spectrum(TDC	
2009)		

–  a	Hagedorn	spectrum	for	the	asympto@c		density	of	
hadrons	N(m)~m-d	exp(m/TH)	,	where	N(m)	is	the	
number	of	mesons	and	glueballs	with	mass	less	than		
m,		TH	,	the	Hagedorn	temperature	is	a	mass	
parameter	and	fixes	power	law	prefactor.		

–  In	the		large	Nc	limit,	TH	corresponds	to	an	upper	
bound	on	the	temperature	of	hadronic	ma8er	
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The Hagedorn Spectrum 
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Strictly,	it	only	
makes	sense	
when		the	
number	of	
colors	is	large	



•  The	value	of	the	prefactor	power	-d	plays	a	
nontrivial	role	in	the	large	Nc	theromdynamics	
–  If	d>7/2,	then	system	can	reach	TH		with	a	finite	
energy	density	and	entropy	density.	

– There	is	a	good	reason	to	believe	that	d	=	4	.	
•  	d	=	4	is	the	result	for	a	bosonic	string.	
•  Highly	excite	mesons	and	glueballs	are	expected	to	look	
like	excita@ons	of	flux	tubes	which	become	increasingly	
stringy	as	the	flux	tubes	get	long—as	they	do	for	highly	
excited	states.		

•  	d	=	4		is	assumed	in	what	follows.	
23	
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Modern string theory grew out of the failed attempt in 
pre-QCD days to treat strong interactions as a string 
theory. 
It was ultimately abandoned  

–  Phenomenological issues (a pesky massless spin-2 
meson etc.) 

–  Theoretical consistency (negative norm states, 
tachyons) 

–  Emergence of QCD as a viable field theory for 
strong interactions 

String theory reemerged, phoenix-like from the ashes 
of  this failure, as a putative theory of everything 
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One	might	think	that	the	Hagedorn	point	is	the	
endpoint	of	the	Hadronic	phase.	
	
But	this	is	problema%c;	I	can	create	hadronic	states	
with	higher	energy	densi%es.		What	happens	if	I	do?	
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The	hadronic	regime—a	gas	of	noninterac%ng	
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of	plasma	phase	

Energy	density	
when	system	hits	TH	

This	is		very	peculiar.	
•  There	is	a	discon@nuity	in	the	s’’’(ε)	as	one	sees	in	

2nd	order	transi@on	
•  	s’’(ε)=0	over	an	extended	region	one	sees	in	a	1st	

order	transi@on	
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Energy	density	
when	system	hits	TH	

Presumably,	Nc
-2	correc%ons	alter	the	behavior.	

	
One	expects	that	rather	than	s’’(ε)=0		beyond	the	
Hagedorn	point	one	has	s’’(ε)>	0	indica%ng	local	
instability	but	with	s’’(ε)~Nc

-2		
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Energy	density	
when	system	hits	TH	

Implica%on:	
	

•  	One	can	show	that	the	characteris%c	%me	scale	of	
the	instability,τI, scales	as	τI∼Nc

3	
	

•  The	equlibera%on	τEq	, scales	as	τEq∼Nc
2		

•  Thus	as	the	large	Nc	limit	is	approached	the	
system	can	be	equilibrated	and	(parmetrically)	
long-lived	despite	the	instability	
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Conclusions/Surprises	
There	is	a	clean	way	to	show	that	a	
regime	exists	which	is	both	clearly	
strongly	coupled	and	clearly	a	QGP	
plasma	
	

The	metastable	supercooled	plasma	
phase	of	large	Nc	QCD	has	nega%ve	
absolute	temperature.	
	

Beyond	the	endpoint	of	the	metastable	
hadronic	phase		of	large	Nc	QCD	is	a	
regime	that	is	locally	unstable,	but	none-
the-less	long-lived	
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