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Outline

• Why would we care about SO(6) harmonics?

• How do we treat QM 2-particle problem?

• How we want to treat QM 3-particle problem?

• What should be 3-particle analogs of sp. harmonics?

• How do we find them?

• How to apply them?

– calculate matrix elements

– help us solve Schrodinger’s equation

– even treat some relativistic cases



Why should we care?

• There are a lot of reasons to care for ordinary 
SO(3) spherical harmonics, yet their 
importance stems from QM two-particle 
problem

• SO(6) harmonics are to three-body problem 
what SO(3) harmonics are to two-body 
problem

• Everybody knows SO(3) sp. harmonics, yet 
most have not heard of SO(6) harmonics!?



Solving two particle problems

• Typical example – Hydrogen atom

• Using center-of-mass reference system where 
a single 3-dim vector determines position

• Split wave function into radial and angular 
parts

• Using basis of spherical harmonics for the 
angular wave function (essential)!

• Knowledge of matrix elements required for 
perturbative corrections/transitions



Goal in 3-particle case

• Use c.m. system, reducing number of fr. deg. from 9 to 6
• Split the problem into radial and hyper-angular parts
• Solve angular part by decomposition to (hyper)spherical 

harmonics!
• Additional requirements/wanted properties:

– Harmonics provide manifest permutation and rotation 
properties

– Account for certain special dynamical symmetries

• Be able to evaluate matrix elements (integrals of 3 h.s. 
harmonics)

•  applications: three quark systems, molecular physics, 
atomic physics (helium atom), positronium ion…



• Jacobi coordinates:

• Non-relativistic energy – SO(6) invariant:

Center-of-mass system

In the case of different masses 
coordinates are more complicated



6 dim spherical harmonics = ???

• Let us recall a few facts about standard 3D s.h.

– Functions on sphere:

– Orthogonal:

– E.g.:

UIR of 
UIR of 



D-dim hyper-spherical harmonics
• Intuitively: natural basis for functions on D-dim 

sphere

• Homogenous harmonic polynomials (obeying 
Laplace eq.) of order K in Cartesian coordinates    
restricted to unit sphere

• Harmonics of order K are further labeled by 
appropriate quantum numbers, usually related to 
SO(D) subgroups

• For 3-particles, there are many wrong but only one 
symmetrically/mathematically proper way to 
choose labels! 



Decomposition

• Complex Jacobi coord.:

SO(3)
rotations

SO(6)
U(3)

Y-string 
potential = the 
shortest sum of 
string lengths 
← function of 
triangle area



Quantum numbers

• Labels of SO(6) hyper-spherical harmonics 

SO(6) U(1)

SO(3) SO(2)

SU(3)
multiplicity



• Building blocks – two SO(3) vectors        and

• Start from polynomials sharp in Q:

• Define “core polynomials” sharp in J, m and Q:

• Make them harmonic by finding ortho-complement 
w.r.t. polynomials with lesser K, i.e.:

• Finally, remove remaining degeneracy, i.e. introduce 
multiplicity label.

Long way to the explicit expressions…



After all that we can…

…explicitly calculate the harmonics e.g. in 
Wolfram Mathematica…

…



Nice permutation properties:

1) Transposition        is pure sign:

2)

3) 



Now we can solve Schrodinger eq. by 
h.s. harmonics decomposition

• Decompose pot. energy                                    into h.s.h:

• Schrodinger equation –> coupled d.e. in        :    :

where:
Matrix 

elements



We can evaluate matrix elements!

where:



Realistic potentials for identical particles 
have only few harmonics!

• Energy and ordering of the states depend only 
on a few coefficients!

4 out of 
2366 

possible 
K<11 !



State orderings
State ordering for K=2 and K=3:



Delta potential state ordering for K=4 and K=5:

State orderings



We can also treat some relativistic 
cases!

• Semi-relativistic three-quark Hamiltonian:

• Harmonic oscillator potential:

• Not too realistic (nor covariant) but good as a toy 
model and basis for perturbation calculus.

• In momentum picture we get a common form of 
Schrodinger’s equation!



Ultrarelativistic case

• In CM frame, due to                   we can use 
Jacobi coordinates for momenta!

• Ultrarelativistic limit:

• Almost becomes Delta pot.:



To sum up:

• O(6) h.s.h are to three-particle problem what 
ordinary s.h. are to two-particle problem

• proper labels are

• tables of explicit expressions available

• matrix elements available

• accounting for only few terms effectively 
solves Schrodinger equation

• help differentiating  and Y



Talk based on:
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• Building blocks – two SO(3) vectors        and

• Start from polynomials sharp in Q:

• Define “core polynomials” sharp in J, m and Q:

• Make them harmonic by finding ortho-complement 
w.r.t. polynomials with lesser K, i.e.:

• Finally, remove remaining degeneracy, i.e. introduce 
multiplicity label.

Long way to the explicit expressions…



State orderings
Fixed state ordering for K=2: Delta potential state ordering 

for K=4:



Particle permutations

• Transformations are easily inferred since:



In practice we need matrix elements!

• E.g. potential energy term in Schr. eq. turns into 
matrix elements of form: 

• In principle these can be calculated using formula:

• Pros: integral of any number of h.s. harmonics can 
be evaluated

• Cons: requires prior calculation of explicit h.s. 
harmonics expressions, is not fast and is not a 
closed form! 

=



A different group-theoretical 
viewpoint

• A h.s. harmonic of a compact Lie group G on       is a 
function that transforms as a basis vector m of UIR L:

where                                    is a Wigner D-function

• This is already satisfied by (conj.) D-functions on entire 
G:

• What about more common homogeneous spaces?



H.s. harmonics = Wigner D-functions

• Stabilizer of a point:              ,                     

• Choose H invariant vector        :

• Wigner D-function                becomes function on 

• After normalization, this is the h.s. harmonic function:



An important direct consequence:

• Integral of three h.s. harmonics always turns into 
Clebsch-Gordan coefficients:



Back to three particles

• Stabilizer subgroup = SO(5), hyper sphere SO(6)/SO(5)

• The integral turns into SO(6) CG coefficients:

• Problem: values of SO(6) CG coefficients?

SO(5) subgroup 
invariant vector



But these are also functions on 
SU(3)/SU(2) !

• This is seen by considering U(3) action on complex 
coordinates      , and noting isometry subgroup U(2)

• Analogous formula with SU(3) CG coefficients is also 
valid!

• SU(3) CG coefficients are available!

SU(2) subgroup 
invariant vector



For the potential energy matrix 
elements:

where:



Now we can solve problems by h.s. 
harmonics decomposition

• Schrodinger equation – coupled d.e. in        :    :

where:



Realistic potentials for identical particles 
have only few harmonics!

• Energy and ordering of the states depend only 
on a few coefficients!

4 out of 
2366 

possible 
K<11 !



State orderings

Fixed state ordering for K=2:

Delta potential state ordering 
for K=4:





Thank you



Hyper-spherical coordinates

• Triangle shape-space parameters:

• Plus angles that fix the position/orientation of 
the triangle plane (some Φ1, Φ2, Φ3 )

Smith-Iwai
Choice of 

angles



I - Case of planar motion

• 4 c.m. degrees of freedom - Jacobi coordinates:

• or spherically  R, α, φ and Φ

• Hyper-angular momenta – so(4) algebra:

conjugated to overall 
angular momentum



Decomposition:

Y-string potential = the shortest sum of 
string lengths ← function of triangle area



• Labeled by K, L and Q:

• Functions coincide with SO(3) Wigner D-
functions:

• Interactions preserve value of L (rotational 
invariance) and some even preserve Q (area 
dependant like the Y-string three-quark potential) 

Hyper-spherical harmonics



Calculations now become much 
simpler…

• We decompose potential energy into hyper-
spherical harmonics and split the problem into 
radial and angular parts:



II - Case of 3D motion

• 6 c.m. degrees of freedom - Jacobi coordinates:

• or spherically  R, α, φ and some Φ1, Φ2, Φ3

• Hyper-angular momenta – so(6) algebra:
Tricky!



Particle permutations

• Transformations are easily inferred since:

…



Goal in 3-particle case

• Use c.m. system and split the problem into radial and angular 
parts

• Interaction is not radial-only, but in all realistic interaction 
potentials “radial” component is dominant – starting point 
for perturbation approach

• Solve angular part by decomposition to (hyper)spherical 
harmonics

• Account for some special dynamical symmetries (e.g. Y-string 
three-quark potential)

• Harmonics provide manifest permutation and rotation 
properties

• Applications: three quark systems, molecular physics, atomic 
physics (helium atom), positronium ion…



Hyper-spherical coordinates

• Triangle shape-space parameters:

• Plus angles that fix the position/orientation of 
the triangle plane (some Φ1, Φ2, Φ3 )

Smith-Iwai
Choice of 

angles





6 dim spherical harmonics = ???

• Let us recall a few facts about standard 3D s.h.

– Functions on sphere:

– Orthogonal:

– E.g.:

UIR of 
UIR of 



D-dim hyper-spherical harmonics

• Intuitively: natural basis for functions on D-dim sphere

• Functions on SO(D)/SO(D-1) – transform as traceless 
symmetric tensor representations (only a subset of all 
tensorial UIRs)

• UIR labeled by single integer K, highest weight (K, 0, 0,…) 
<=> K boxes in a single row <=> K(K+D-2) quadratic 
Casimir eigenvalue

• Homogenous harmonic polynomials (obeying Laplace 
eq. = traceless) of order K restricted to unit sphere

• Harmonics of order K are further labeled by appropriate 
quantum numbers, usually related to SO(D) subgroups



Decomposition

• Complex Jacobi coord.:

SO(3)
rotations

SO(6)
U(3)

Y-string 
potential = the 
shortest sum of 
string lengths 
← function of 
triangle area



Quantum numbers

• Labels of SO(6) hyper-spherical harmonics 

SO(6) U(1)

SO(3) SO(2)

SU(3)
multiplicity

E.g. in SU(3) context 
often is used operator



• Building blocks – two SO(3) vectors        and

• Start from polynomials sharp in Q:

• Define “core polynomials” sharp in J, m and Q:

• Make them harmonic by finding ortho-complement 
w.r.t. polynomials with lesser K, i.e.:

• Finally, remove remaining degeneracy, i.e. introduce 
multiplicity label.

Long way to the explicit expressions…



After all that we can…

…explicitly calculate the harmonics in Wolfram 
Mathematica…

…



Particle permutations

• Transformations are easily inferred since:



“Core polynomials”

• Building blocks – two SO(3) vectors        and

• Start from polynomials sharp in Q:

• Define “core polynomials” sharp in J, m and Q:

Core polynomial 
certainly contains 
component with 

but also 
lower K components



“Harmonizing” polynomials

• Let                                   be shortened notation for all 
core polynomials with K values less than some given

• Harmonic polynomials are obtained as ortho-
complement w.r.t. polynomials with lesser K, i.e.:

where are deduced from requirement: Scalar product of 
core polynomials



Scalar product of polynomials on 
hyper-sphere

• Defined as

• it can be shown that:

• that for core polynomials eventually leads to a 
closed-form expression… 

• Integral of any number of polynomials can be 
evaluated (e.g. matrix elements)



• Exist nonorthogonal and 

• Degenerated subspace:

• We remove multiplicity by using physically appropriate 
operator                                   and obtain orthonormalized
spherical harmonic polynomials as:

• where                              and U is a matrix such that:

MultiplicityE.g. this can be
or often used operator



Now we can solve problems by h.s.h.
decomposition

• Schrodinger equation – coupled d.e. in        :    :

• where:

• In the first order p.t. this can be diagonalized into:



Quantum numbers

• Labels of SO(6) hyper-spherical harmonics 

SO(6) U(1)

SO(3) SO(2)

SU(3)
multiplicity

E.g. in SU(3) context 
often is used operator


