Excited QCD 2020

Excited QCD 2020

O(6) harmonics in the three-heavyquark problem

I. Salom and V.
Dmitrašinović

Institute of Physics, University of Belgrade

Outline

- Why would we care about SO(6) harmonics?
- How do we treat QM 2-particle problem?
- How we want to treat QM 3-particle problem?
- What should be 3-particle analogs of sp. harmonics?
- How do we find them?
- How to apply them?
- calculate matrix elements
- help us solve Schrodinger's equation
- even treat some relativistic cases

Why should we care?

- There are a lot of reasons to care for ordinary SO(3) spherical harmonics, yet their importance stems from QM two-particle problem
- $\mathrm{SO}(6)$ harmonics are to three-body problem what SO(3) harmonics are to two-body problem
- Everybody knows SO(3) sp. harmonics, yet most have not heard of $\mathrm{SO}(6)$ harmonics!?

Solving two particle problems

- Typical example - Hydrogen atom
- Using center-of-mass reference system where a single 3-dim vector determines position
- Split wave function into radial and angular parts
- Using basis of spherical harmonics for the angular wave function (essential)!
- Knowledge of matrix elements required for perturbative corrections/transitions

Goal in 3-particle case

- Use c.m. system, reducing number of fr. deg. from 9 to 6
- Split the problem into radial and hyper-angular parts
- Solve angular part by decomposition to (hyper)spherical harmonics!
- Additional requirements/wanted properties:
- Harmonics provide manifest permutation and rotation properties
- Account for certain special dynamical symmetries
- Be able to evaluate matrix elements (integrals of 3 h.s. harmonics)
- \Rightarrow applications: three quark systems, molecular physics, atomic physics (helium atom), positronium ion...

Center-of-mass system

- Jacobi coordinates:

$$
\begin{aligned}
& \boldsymbol{\rho}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{\mathbf{1}}-\mathbf{x}_{\mathbf{2}}\right), \\
& \boldsymbol{\lambda}=\frac{1}{\sqrt{6}}\left(\mathbf{x}_{\mathbf{1}}+\mathbf{x}_{\mathbf{2}}-2 \mathbf{x}_{\mathbf{3}}\right)
\end{aligned}
$$

In the case of different masses coordinates are more complicated

$$
x_{\mu}=\left(\rho_{1}, \rho_{2}, \rho_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right), \quad \mu=1,2,3,4,5,6 .
$$

- Non-relativistic energy - SO(6) invariant:

$$
T=\frac{m}{2}\left(\dot{\boldsymbol{\rho}}^{2}+\dot{\boldsymbol{\lambda}}^{2}\right)=\sum_{\mu=1}^{6} \frac{m}{2}\left(\dot{\boldsymbol{x}}_{\mu}\right)^{2}
$$

$$
\begin{array}{r}
K_{\mu \nu} \equiv i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \mid \mu, \nu=1, \ldots 6 \\
R=\sqrt{\boldsymbol{\rho}^{2}+\boldsymbol{\lambda}^{2}}=\sqrt{\sum_{\mu} x_{\mu}^{2}}
\end{array} \Rightarrow T=\frac{m}{2} \dot{R}^{2}+\frac{K_{\mu \nu}^{2}}{2 m R^{2}}
$$

6 dim spherical harmonics = ???

- Let us recall a few facts about standard 3D s.h.
- Functions on sphere: $\mathcal{Y}_{m}^{J \longleftarrow \text { UIR of } S O(3)}$ UIR of $S O(2) \subset S O(3)$

$$
J^{2} \mathcal{Y}_{m}^{J}=J(J+1) \mathcal{Y}_{m}^{J} \quad J_{3} \mathcal{Y}_{m}^{J}=m \mathcal{Y}_{m}^{J}
$$

- Orthogonal:

$$
\frac{1}{4 \pi} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \mathcal{y}_{m}^{J} \mathcal{Y}_{m^{\prime}, *}^{J^{*} d \Omega=\delta_{J J} \delta m m^{\prime}} \quad \nabla^{2} \mathcal{P}_{m}^{J}=0
$$

- E.g.:

$$
\begin{array}{rlrl}
Y_{1}^{-1}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x-i y)}{r} & Y_{2}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta \cdot \cos \theta=\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x-i y) z}{r^{2}} \\
Y_{1}^{0}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \frac{z}{r} & Y_{2}^{0}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot\left(3 \cos ^{2} \theta-1\right)=\frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot \frac{\left(2 z^{2}-x^{2}-y^{2}\right)}{r^{2}} \\
Y_{1}^{1}(\theta, \varphi) & =\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta & =\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x+i y)}{r} & Y_{2}^{1}(\theta, \varphi)=\frac{-1}{2} \sqrt{\frac{15}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta \cdot \cos \theta=\frac{-1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y) z}{r^{2}} \\
& Y_{2}^{2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot e^{2 i \varphi} \cdot \sin ^{2} \theta=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y)^{2}}{r^{2}}
\end{array}
$$

D-dim hyper-spherical harmonics

- Intuitively: natural basis for functions on D-dim sphere
- Homogenous harmonic polynomials (obeying Laplace eq.) of order K in Cartesian coordinates x_{μ} restricted to unit sphere
- Harmonics of order K are further labeled by appropriate quantum numbers, usually related to SO(D) subgroups
- For 3-particles, there are many wrong but only one symmetrically/mathematically proper way to choose labels!
${ }_{v}[\bar{Q}, \boldsymbol{\rho} \times \boldsymbol{\lambda}]=0{ }_{\mathrm{SO}(6)}$

Quantum numbers

- Labels of SO(6) hyper-spherical harmonics

$$
U(1) \otimes S O(3)_{r o t} \subset U(3) \subset S O(6)
$$

Long way to the explicit expressions...

- Building blocks - two SO(3) vectors X^{+}and X^{-}
- Start from polynomials sharp in Q:

- Make them arn nio v findi ; ort -complement

- Finally, remove remaining degeneracy, i.e. introduce multiplicity label.

After all that we can...

...explicitly calculate the harmonics e.g. in Wolfram Mathematica...
$\mathrm{Y}\{2,2,2,2,-6\}=\frac{\sqrt{\frac{3}{2}} \mathrm{X}[1,1]^{2}}{\pi^{3 / 2}}$
$\mathrm{Y}\{3,-3,1,1,2\}=\frac{\sqrt{3} \mathrm{X}[1,-1] \mathrm{Xsq}[-1]^{2}}{\pi^{3 / 2}}$
$\mathrm{Y}\{3,-3,3,3,12\}=\frac{\sqrt{5} \mathrm{X}[1,-1]^{3}}{2 \pi^{3 / 2}}$
$\mathrm{Y}\{3,-1,1,1,-6\}=\frac{\sqrt{6}\left(-\frac{1}{2} \mathrm{Xsq}^{2} \mathrm{X}[1,-1]+\mathrm{X}[1,1] \mathrm{Xsq}[-1]^{2}\right)}{\pi^{3 / 2}}$
$Y\{3,-1,2,2,10\}=\frac{\sqrt{5} X[1,-1](X[0,1] X[1,-1]-X[0,-1] X[1,1])}{\pi^{3 / 2}}$
$Y\{3,-1,3,3,4\}=\frac{\sqrt{15} X[1,-1]^{2} X[1,1]}{2 \pi^{3 / 2}}$
$\mathrm{Y}\{3,1,1,1,6\}=\frac{\sqrt{6}\left(-\frac{1}{2} \mathrm{Xsq}^{2} \mathrm{X}[1,1]+\mathrm{X}[1,-1] \mathrm{Xsq}[1]^{2}\right)}{\pi^{3 / 2}}$

$$
\mathrm{Y}\{0,0,0,0,0\}=\frac{1}{\pi^{3 / 2}}
$$

$$
\mathrm{Y}\{1,-1,1,1,2\}=\frac{\sqrt{\frac{3}{2}} \mathrm{X}[1,-1]}{\pi^{3 / 2}}
$$

$$
Y\{1,1,1,1,-2\}=\frac{\sqrt{\frac{3}{2}} X[1,1]}{\pi^{3 / 2}}
$$

$$
\mathrm{Y}\{2,-2,0,0,0\}=\frac{\sqrt{2} \mathrm{Xsq}[-1]^{2}}{\pi^{3 / 2}}
$$

$$
\mathrm{Y}\{2,-2,2,2,6\}=\frac{\sqrt{\frac{3}{2}} \mathrm{X}[1,-1]^{2}}{\pi^{3 / 2}}
$$

$$
\mathrm{Y}\{2,0,1,1,0\}=\frac{\sqrt{3}(\mathrm{X}[0,1] \mathrm{X}[1,-1]-\mathrm{X}[0,-1] \mathrm{X}[1,1])}{\pi^{3 / 2}}
$$

$$
\mathrm{Y}\{2,0,2,2,0\}=\frac{\sqrt{3} \mathrm{X}[1,-1] \mathrm{X}[1,1]}{\pi^{3 / 2}}
$$

Nice permutation properties:

$\mathcal{Y}_{J, m, \pm}^{K|Q| v}(\boldsymbol{\lambda}, \boldsymbol{\rho}) \equiv \frac{1}{\sqrt{2}}\left(\mathcal{Y}_{J, m}^{K|Q| v}(\boldsymbol{\lambda}, \boldsymbol{\rho}) \pm(-1)^{K-J} \mathcal{Y}_{J, m}^{K,-|Q|, v^{\prime}}(\boldsymbol{\lambda}, \boldsymbol{\rho})\right)$

1) Transposition \mathcal{T}_{12} is pure sign: $\mathcal{Y}_{J, m, \pm}^{K|Q| v}(\boldsymbol{\lambda}, \rho) \rightarrow \pm \mathcal{Y}_{J, m, \pm}^{K|q| v}(\boldsymbol{\lambda}, \rho)$
2) $Q \not \equiv 0(\bmod 3) \Rightarrow \mathcal{Y}_{J, m, \pm}^{K|Q| v}(\boldsymbol{\lambda}, \boldsymbol{\rho}) \in$ mixed representation M
3) $Q \equiv 0(\bmod 3) \Rightarrow \mathcal{Y}_{J, m,+}^{K|Q| \nu}(\boldsymbol{\lambda}, \boldsymbol{\rho}) \in$ symmetric representation S
$\mathcal{Y}_{J, m,-}^{K|Q| v}(\boldsymbol{\lambda}, \rho) \in$ antisymmetric representation A
$S_{3} \otimes S O(3)_{r o t} \subset O(2) \otimes S O(3)_{r o t} \subset O(6)$

Now we can solve Schrodinger eq. by h.s. harmonics decomposition

- Decompose pot. energy $V(R, \alpha, \phi)=V(R) V(\alpha, \phi)$ into h.s.h:

$$
\left.V(\alpha, \phi)=\sum_{\mathrm{K}, Q}^{\infty} v_{\mathrm{K}, Q}^{3-\text { body }}\right\rangle_{00}^{\mathrm{K} Q \nu}(\alpha, \phi) \quad v_{\mathrm{K}, Q}^{3 \mathrm{~K} \text { body }}=\int \mathcal{Y}_{00}^{\mathrm{K} Q_{u *}}\left(\Omega_{5}\right) V(\alpha, \phi) d \Omega_{(5)}
$$

- Schrodinger equation \rightarrow coupled d.e. in $\psi_{[\mathrm{m}]}^{\mathrm{K}}(R)$:

$$
\begin{aligned}
& -\frac{1}{2 \mu}\left[\frac{d^{2}}{d R^{2}}+\frac{5}{R} \frac{d}{d R}-\frac{\mathrm{K}(\mathrm{~K}+4)}{R^{2}}+2 \mu E\right] \psi_{[\mathrm{m}]}^{\mathrm{K}}(R)+V_{\mathrm{eff} .}(R) \sum_{\mathrm{K}^{\prime},\left[\mathrm{m}^{\prime}\right]} C_{[\mathrm{m}]\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K} \mathrm{~K}^{\prime}} \psi_{\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime}}(R)=0 \\
& \text { Where: } \\
& \text { Matrix } \\
& \text { elements } \\
& \qquad C_{\left[\mathrm{m}^{\prime \prime}\right]\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime \prime}}=\delta_{\mathrm{K}^{\prime \prime}, \mathrm{K}^{\prime}} \delta_{\left[\mathrm{m}^{\prime \prime}\right],\left[\mathrm{m}^{\prime}\right]}+\pi \sqrt{\pi} \sum_{\mathrm{K}>0, Q}^{\infty} \frac{v_{\mathrm{K}, Q}^{3-\text { body }}}{v_{00}^{3-\text { body }}\left\langle\mathcal{Y}_{\left[\mathrm{m}^{\prime \prime}\right]}^{\mathrm{K}^{\prime \prime}}\left(\Omega_{5}\right)\right| \mathcal{Y}_{00}^{\mathrm{K} Q v}(\alpha, \phi)\left|\mathcal{Y}_{\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime}}\left(\Omega_{5}\right)\right\rangle}
\end{aligned}
$$

We can evaluate matrix elements!

$$
\begin{aligned}
& \left\langle\mathcal{Y}_{\left[\mathrm{m}^{\prime \prime}\right]}^{\mathrm{K}^{\prime \prime}}\left(\Omega_{5}\right)\right| \mathcal{Y}_{00}^{\mathrm{K} Q v}(\alpha, \phi)\left|\mathcal{Y}_{\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime}}\left(\Omega_{5}\right)\right\rangle=\frac{1}{\sqrt{\pi^{3}}} \sqrt{\frac{\operatorname{dim}(\mathrm{~K}, Q) \operatorname{dim}\left(\mathrm{K}^{\prime}, Q^{\prime}\right)}{\operatorname{dim}\left(\mathrm{K}^{\prime \prime}, Q^{\prime \prime}\right)}}
\end{aligned}
$$

where:

$$
\begin{aligned}
& C \underset{0_{H}}{\left\{\mathrm{~K}_{1}, Q_{1}\right\}} \underset{0_{H}}{\left\{\mathrm{~K}_{2}, Q_{2}\right\}} \underset{0_{H}}{\{\mathrm{~K}, Q\}}=\left(A_{0}^{\mathrm{K}_{1}, Q} A_{0}^{\mathrm{K}} \mathrm{~K}_{2}, Q A_{0}^{\mathrm{K}, Q} \sqrt{\frac{\pi^{3} \operatorname{dim}(\mathrm{~K}, Q)}{\operatorname{dim}\left(\mathrm{K}_{1}, Q_{1}\right) \operatorname{dim}\left(\mathrm{K}_{2}, Q_{2}\right)}}\right. \\
& \times \sum_{\mathrm{K}_{1}^{\prime}=\left|Q_{1}\right|,\left|Q_{1}\right|+2, \ldots \mathrm{~K}_{2}^{\prime}=\left|Q_{2}\right|,\left|Q_{2}\right|+2, \ldots \mathrm{~K}^{\prime}=|Q|,|Q|+2, \ldots}^{\mathrm{K}_{1}} \sum_{\mathrm{K}_{1}^{\prime}}^{\mathrm{K}_{2}} \Pi_{\mathrm{K}_{2}}^{\mathrm{K}_{1}, Q_{1}} \Pi_{\mathrm{K}_{2}^{\prime}}^{\mathrm{K}_{2}, Q_{2}} \Pi_{\mathrm{K}^{\prime}}^{\mathrm{K},-Q} \\
& \left.\times \frac{2 \pi^{3}}{\left(\frac{\mathrm{~K}_{1}^{\prime}+\mathrm{K}_{2}^{\prime}+\mathrm{K}^{\prime}}{2}+1\right)\left(\frac{\mathrm{K}_{1}^{\prime}+\mathrm{K}_{2}^{\prime}+\mathrm{K}^{\prime}}{2}+2\right)} \delta_{Q_{1}+Q_{2}, Q}\right)^{\frac{1}{2}} \quad \Pi_{\mathrm{K}^{\prime}}^{\mathrm{K}, Q}=\prod_{\mathrm{K}^{\prime \prime}=|Q|,|Q|+2, \ldots}^{\mathrm{K}^{\prime}-2}\left(1-\frac{(\mathrm{K}+2)^{2}-Q^{2}}{\left(\mathrm{~K}^{\prime \prime}+2\right)^{2}-Q^{2}}\right) \\
& A_{0}^{\mathrm{K}, Q}=(-1)^{\frac{\mathrm{K}-|Q|}{2}}\left(\sum_{\mathrm{K}_{1}, \mathrm{~K}_{2}=|Q|,|Q|+2, \ldots}^{\mathrm{K}} \Pi_{\mathrm{K}_{1}}^{\mathrm{K}, Q} \Pi_{\mathrm{K}_{2}}^{\mathrm{K}, Q} \frac{2 \pi^{3}}{\left(\frac{\mathrm{~K}_{1}+\mathrm{K}_{2}}{2}+1\right)\left(\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2}+2\right)}\right)^{-\frac{1}{2}}
\end{aligned}
$$

Realistic potentials for identical particles have only few harmonics!

$$
v_{\mathrm{K}, Q}^{3-\text { body }}=\int \mathcal{Y}_{0,0}^{\mathrm{K}, Q, \nu *}\left(\Omega_{5}\right) V_{3-\text { body }}(\alpha, \phi) d \Omega_{(5)}
$$

$\begin{gathered} 4 \text { out of } \\ 2366 \\ \text { possible } \\ \mathrm{K}<11! \end{gathered}$	(K, Q)	$v_{\mathrm{K} Q}^{\mathrm{Y}}$	$v_{\mathrm{K} Q}^{\Delta}$	$v_{\mathrm{K} Q}^{\text {Coulomb }}$
	$(0,0)$	8.18	16.04	20.04
	$(4,0)$	-0.44	-0.44	2.95
	$(6, \pm 6)$	(0)	-0.14	1.88
	$(8,0)$	-0.09	-0.06	1.49
	$\sum \frac{\left(v_{\mathrm{K}, Q}^{3-\text { body }}\right)^{2}}{\left(\int\left(V_{3-\text { body }}\right)^{2} d \Omega_{(5)}\right)}$	99\%	99\%	94\%

- Energy and ordering of the states depend only on a few coefficients!

State orderings

State ordering for $\mathrm{K}=2$ and $\mathrm{K}=3$:

State orderings

Delta potential state ordering for $K=4$ and $K=5$:

$$
v_{00} \neq 0=v_{40}=v_{80}=v_{66}
$$

$$
v_{40}, v_{80} \neq 0=v_{66}
$$

$$
v_{40} \neq 0=v_{80}=v_{66} \quad v_{40}, v_{80}, v_{66} \neq 0
$$

$$
\begin{aligned}
& \begin{array}{l}
v_{00} \neq 0= \\
v_{66}=v_{80}=0
\end{array} \\
& \qquad v_{00}, v_{40} \neq 0=v_{66}=v_{80} \quad v_{00}, v_{40}, v_{80} \neq 0=v_{66}
\end{aligned}
$$

We can also treat some relativistic cases!

- Semi-relativistic three-quark Hamiltonian:

$$
H=\sum_{a} \sqrt{m_{a}^{2}+\mathbf{p}_{i}^{2}}+V_{3 b}(|\boldsymbol{\rho}|,|\boldsymbol{\lambda}|, \boldsymbol{\rho} \cdot \boldsymbol{\lambda})
$$

- Harmonic oscillator potential:

$$
V_{3 b}(|\boldsymbol{\rho}|,|\boldsymbol{\lambda}|, \boldsymbol{\rho} \cdot \boldsymbol{\lambda})=V_{\mathrm{HO}}=\frac{k}{2}\left(\rho^{2}+\boldsymbol{\lambda}^{2}\right)
$$

- Not too realistic (nor covariant) but good as a toy model and basis for perturbation calculus.
- In momentum picture we get a common form of Schrodinger's equation!

Ultrarelativistic case

- In CM frame, due to $\sum \mathbf{p}_{i}=0$ we can use Jacobi coordinates for momenta!
- Ultrarelativistic limit: $\tilde{T}=\sum_{i=1}\left|\mathbf{p}_{i}\right|$
- Almost becomes Delta pot.: $V=\frac{1}{\sqrt{3}} V_{\Delta}(\rho \leftrightarrow \lambda)$

(K, Q)	$v_{K Q}(\mathrm{Y}-$ string $)$	$v_{K Q}(\Delta)$	$v_{K Q}($ urHO $)$	$v_{K Q}($ Coulomb $)$	$v_{K Q}(\mathrm{Log})$
$(0,0)$	8.22	16.04	16.04	20.04	-6.58
$(4,0)$	-0.398	-0.445	-0.445	2.93	-1.21
$(6, \pm 6)$	-0.027	-0.14	0.14	1.88	-0.56
$(8,0)$	-0.064	-0.04	-0.04	1.41	-0.33
$(12,0)$	-0.01	0	0	0	-0.17

To sum up:

- $\mathrm{O}(6)$ h.s.h are to three-particle problem what ordinary s.h. are to two-particle problem
- proper labels are $\mathcal{Y}_{J, m, \pm}^{K|Q| v}$
- tables of explicit expressions available
- matrix elements available
- accounting for only few terms effectively solves Schrodinger equation
- help differentiating Δ and Y

Talk based on:

V. Dmitrašinović, Igor Salom, "O(6) algebraic theory of three nonrelativistic quarks bound by spin-independent interactions", PHYSICAL REVIEW D 97, 094011 (2018), Pages 094011-1-

Igor Salom, V. Dmitrašinović, "Permutation-symmetric three-particle hyper-spherical harmonics based on the $\mathrm{S} 3 \otimes \mathrm{SO}(3)$ rot $\subset \mathrm{O}(2) \otimes \mathrm{SO}(3)$ rot $\subset \mathrm{U}(3) \rtimes \mathrm{S} 2 \subset \mathrm{O}(6)$ subgroup chain", Nuclear Physics B, Volume 920, July 2017, Pages 521-564, ISSN 0550-3213,

Igor Salom and Veljko Dmitrašinović, "O(6) algebraic approach to three bound identical particles in the hyperspherical adiabatic representation", Physics Letters A, Volume 380, Issues 22-23, 20 May 2016, Pages 1904-1911, doi:10.1016/j.physleta.2016.04.008

Veljko Dmitrasinovic and Igor Salom, "SO(4) algebraic approach to the three-body bound state problem in two dimensions", J. Math. Phys. 55, 082105 (2014), DOI: 10.1063/1.4891399

Thank you

Excited QCD 2020

O(6) harmonics in the three-heavy-quark problem

I. Salom and V. Dmitrašinović

Institute of Physics, University of Belgrade

Long way to the explicit expressions...

- Building blocks - two SO(3) vectors X^{+}and X^{-}
- Start from polynomials sharp in Q:

$$
\mathcal{P}_{J_{+} m_{+} J_{-} m_{-}}^{d_{-}}(X)=\left(X^{+} \cdot X^{+}\right)^{\frac{d_{+}-J_{+}}{2}} \tilde{3}_{3, m_{+}}^{J_{+}}\left(X^{+}\right)\left(X^{-} \cdot X^{-}\right)^{\frac{d^{--J}}{2}} \tilde{y}_{3, m_{-}}^{J-}\left(X^{-}\right)
$$

- Define "core polynomials" sharp in J, m and Q:
- Make them harmonic by finding ortho-complement w.r.t. polynomials with lesser K, i.e.: $\mathcal{P}_{\mathcal{H}\left(J_{+} J_{-}\right) J, m}^{K}(X)=\mathcal{P}_{\left(J_{+} J_{-}\right) J_{, m}}^{\bar{K} Q}(X)-\sum_{a} c_{a} R^{\bar{K}-K_{a}} \mathcal{P}_{a}(X)$,
- Finally, remove remaining degeneracy, i.e. introduce multiplicity label.

State orderings

Fixed state ordering for $\mathrm{K}=2$:

$$
\left[20,1^{+}\right] \frac{1}{\pi \sqrt{\pi}}\left(v_{00}-\frac{1}{\sqrt{3}} v_{40}\right)
$$

$$
\left[70,0^{+}\right] \frac{1}{\pi \sqrt{\pi}}\left(v_{00}+\frac{1}{\sqrt{3}} v_{40}\right)
$$

$$
\left[70,2^{+}\right] \frac{1}{\pi \sqrt{\pi}}\left(v_{00}-\frac{1}{5 \sqrt{3}} v_{40}\right)
$$

$$
\left[56,2^{+}\right] \frac{1}{\pi \sqrt{\pi}}\left(v_{00}+\frac{\sqrt{3}}{5} v_{40}\right),
$$

Delta potential state ordering for $K=4$:

Particle permutations

- Transformations are easily inferred since:
$\mathcal{T}_{12}: \quad \lambda \rightarrow \lambda, \quad \rho \rightarrow-\rho$,
$\mathcal{T}_{23}: \quad \boldsymbol{\lambda} \rightarrow-\frac{1}{2} \boldsymbol{\lambda}+\frac{\sqrt{3}}{2} \boldsymbol{\rho}, \quad \boldsymbol{\rho} \rightarrow \frac{1}{2} \boldsymbol{\rho}+\frac{\sqrt{3}}{2} \boldsymbol{\lambda}$,
$\mathcal{T}_{31}: \quad \boldsymbol{\lambda} \rightarrow-\frac{1}{2} \boldsymbol{\lambda}-\frac{\sqrt{3}}{2} \boldsymbol{\rho}, \quad \rho \rightarrow \frac{1}{2} \rho-\frac{\sqrt{3}}{2} \boldsymbol{\lambda}$.

$$
\begin{gathered}
\mathcal{T}_{12}: X_{i}^{ \pm} \rightarrow X_{i}^{\mp}, \quad \mathcal{T}_{23}: X_{i}^{ \pm} \rightarrow e^{ \pm \frac{2 i \pi}{3}} X_{i}^{\mp}, \quad \mathcal{T}_{31}: X_{i}^{ \pm} \rightarrow e^{\mp \frac{2 i \pi}{3}} X_{i}^{\mp} \\
- \\
\mathcal{T}_{a b}: Q \rightarrow-Q, K \rightarrow K, J_{i j} \rightarrow J_{i j}, \nu \rightarrow \pm \nu
\end{gathered}
$$

In practice we need matrix elements!

- E.g. potential energy term in Schr. eq. turns into matrix elements of form:

$$
\left\langle\mathcal{Y}_{\left[\mathrm{m}^{\prime \prime}\right]}^{K^{\prime \prime}}\left(\Omega_{5}\right)\right| \mathcal{Y}_{00}^{K Q v}(\alpha, \phi)\left|\mathcal{Y}_{\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime}}\left(\Omega_{5}\right)\right\rangle=\int \mathcal{Y}_{[m]}^{* K}\left(\Omega_{5}\right) \mathcal{Y}_{\left[m_{1}\right]}^{\mathrm{K}_{1}}\left(\Omega_{5}\right) \mathcal{Y}_{\left[m_{2}\right]}^{\mathrm{K}_{2}}\left(\Omega_{5}\right) d \Omega_{5}
$$

- In principle these can be calculated using formula:

$$
\int_{\Omega} \frac{1}{R^{6}} x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{6}^{m_{6}} d \Omega=2 \frac{\prod_{\mu=1}^{6} \frac{1+(-1)^{m_{\mu}}}{2} \Gamma\left(\frac{m_{\mu}+1}{2}\right)}{\Gamma\left(3+\sum_{\mu} m_{\mu}\right)}
$$

- Pros: integral of any number of h.s. harmonics can be evaluated
- Cons: requires prior calculation of explicit h.s. harmonics expressions, is not fast and is not a closed form!

A different group-theoretical viewpoint

- A h.s. harmonic of a compact Lie group G on \mathcal{M} is a function that transforms as a basis vector m of UIR L :

$$
g: \mathcal{Y}_{m}^{L}(\Omega) \rightarrow \sum_{m^{\prime}} D_{m^{\prime} m}^{L}(g) \mathcal{Y}_{m^{\prime}}^{L}(\Omega), \quad g \in G, \Omega \in \mathcal{M}
$$

where $\left.D_{m^{\prime} m}^{L}(g)=\left.\left\langle{ }_{m^{\prime}}^{L}\right| D(g)\right|_{m} ^{L}\right\rangle$ is a Wigner D-function

- This is already satisfied by (conj.) D-functions on entire G:
$g^{\prime}: D_{m k}^{* L}(g) \rightarrow D_{m k}^{* L}\left(g^{\prime-1} g\right)=\sum_{m^{\prime}} D_{m m^{\prime}}^{* L}{ }^{-1}\left(g^{\prime}\right) D_{m^{\prime} k}^{* L}(g)=\sum_{m^{\prime}} D_{m^{\prime} m}^{L}\left(g^{\prime}\right) D_{m^{\prime} k}^{* L}(g)$
- What about more common homogeneous spaces?

H.s. harmonics = Wigner D-functions

- Stabilizer of a point: $H_{\Omega} \subset G, H_{\Omega} \cdot \Omega=\Omega \Rightarrow \mathcal{M}=G / H$
- Choose H invariant vector $\left|0_{H}^{L}\right\rangle$:

$$
\left.D(h)\left|\left.\right|_{0_{H}} ^{L}\right\rangle=| |_{0_{H}}^{L}\right\rangle, \forall h \in H
$$

- Wigner D-function $D_{m 0_{H}}^{* L}(g)$ becomes function on G / H

$$
\left.D_{m 0_{H}}^{* L}(g)=D_{m 0_{H}}^{* L}(g(\Omega) h)=\left.\left\langle{ }_{m}^{L}\right| D(g(\Omega)) D(h)\right|_{0_{H}} ^{L}\right\rangle=D_{m 0_{H}}^{* L}(g(\Omega)) \equiv D_{m 0_{H}}^{* L}(\Omega)
$$

- After normalization, this is the h.s. harmonic function:

$$
\mathcal{Y}_{m}^{L}(\Omega)=\sqrt{\frac{\operatorname{dim(L)}}{V_{\mathcal{M}}}} D_{m 0_{H}}^{* L}(\Omega)
$$

An important direct consequence:

- Integral of three h.s. harmonics always turns into Clebsch-Gordan coefficients:

$$
\begin{aligned}
& \int_{\mathcal{M}} \mathcal{Y}_{m}^{* L}(\Omega) \mathcal{Y}_{m_{1}}^{L_{1}}(\Omega) \mathcal{Y}_{m_{2}}^{L_{2}}(\Omega) d \Omega \\
& \quad=\sqrt{\frac{\operatorname{dim}(L) \operatorname{dim}\left(L_{1}\right) \operatorname{dim}\left(L_{2}\right)}{V_{\mathcal{M}}^{3}}} \int_{\mathcal{M}} D_{m 0_{H}}^{L}(\Omega) D_{m_{1} 0_{H}}^{* L_{1}}(\Omega) D_{m_{2} 0_{H}}^{* L_{2}}(\Omega) d \Omega \\
& \quad=\frac{1}{V_{H}} \sqrt{\frac{\operatorname{dim}(L) \operatorname{dim}\left(L_{1}\right) \operatorname{dim}\left(L_{2}\right)}{V_{\mathcal{M}}^{3}}} \int_{G} D_{m 0_{H}}^{L}(g) D_{m_{1} 0_{H}}^{* L_{1}}(g) D_{m_{2} 0_{H}}^{* L_{2}}(g) d g \\
& \quad=\frac{1}{\sqrt{V_{\mathcal{M}}}} \sqrt{\frac{\operatorname{dim}\left(L_{1}\right) \operatorname{dim}\left(L_{2}\right)}{\operatorname{dim}(L)}} C_{m_{1} m_{2} m}^{L_{1} L_{2} L} C_{0_{H} 0_{H} 0_{H}}^{L_{1} L_{2} L},
\end{aligned}
$$

Back to three particles

- Stabilizer subgroup $=\mathrm{SO}(5)$, hyper sphere $\mathrm{SO}(6) / \mathrm{SO}(5)$
- The integral turns into SO(6) CG coefficients:

$$
\begin{array}{ll}
\int_{\mathcal{M}} \mathcal{Y}_{[m]}^{* \mathrm{~K}}\left(\Omega_{5}\right) \mathcal{Y}_{\left[m_{1}\right]}^{\mathrm{K}_{1}}\left(\Omega_{5}\right) \mathcal{Y}_{\left[m_{2}\right]}^{\mathrm{K}_{2}}\left(\Omega_{5}\right) d \Omega_{5} & \begin{array}{l}
\text { so(5) subgroı } \\
\text { invariant vect }
\end{array} \\
\quad=\frac{1}{\sqrt{V_{\mathcal{M}}}} \sqrt{\frac{\operatorname{dim}\left(\mathrm{K}_{1}\right) \operatorname{dim}\left(\mathrm{K}_{2}\right)}{\operatorname{dim}(\mathrm{K})}} C_{\left[m_{1}\right]\left[m_{2}\right][m]}^{\mathrm{K}_{1}} \mathrm{~K}_{2} \mathrm{~K} C_{\left[0_{H}\right]\left[0_{H}\right]\left[0_{H}\right]}^{\mathrm{K}_{1} / \mathrm{K}_{2} \mathrm{~K}}
\end{array}
$$

- Problem: values of SO(6) CG coefficients?

But these are also functions on SU(3)/SU(2)!

- This is seen by considering $U(3)$ action on complex coordinates X^{+}and noting isometry subgroup U(2)
- Analogous formula with SU(3) CG coefficients is also valid!

$$
\begin{aligned}
& \int_{\mathcal{M}} \mathcal{Y}_{L, m}^{* \mathrm{~K} Q v}(X) \mathcal{Y}_{L_{1}, m_{1}}^{\mathrm{K}_{1} Q_{1} v_{1}}(X) \mathcal{Y}_{L_{2}, m_{2}}^{\mathrm{K}_{2} Q_{2 v_{2}}}(X) d X^{3}=
\end{aligned}
$$

- SU(3) CG coefficients are available!

For the potential energy matrix elements:

$$
\begin{aligned}
& \left.\left\langle y_{\left[\mathrm{m}^{\prime}\right]}^{K^{\prime \prime}}\left(\Omega_{5}\right)\right|\right|_{00} ^{K Q v}(\alpha, \phi)\left|\mathcal{D}_{\left[\mathrm{m}^{\prime}\right]}^{\left.K^{\prime}\right]}\left(\Omega_{5}\right)\right\rangle=\frac{1}{\sqrt{\pi^{3}}} \sqrt{\frac{\operatorname{dim}\left(K, Q, Q \operatorname{dim}\left(K^{\prime}, Q^{\prime}\right)\right.}{\operatorname{dim}\left(K^{\prime}, Q^{\prime \prime}\right)}}
\end{aligned}
$$

where:

$$
\begin{aligned}
& C \underset{0_{H}}{\left\{\mathrm{~K}_{1}, Q_{1}\right\}} \underset{0_{H}}{\left\{\mathrm{~K}_{2}, Q_{2}\right\}} \underset{0_{H}}{\{\mathrm{~K}, Q\}}=\left(A_{0}^{\mathrm{K}_{1}, Q} A_{0}^{\mathrm{K}} \mathrm{~K}_{2}, Q A_{0}^{\mathrm{K}, Q} \sqrt{\frac{\pi^{3} \operatorname{dim}(\mathrm{~K}, Q)}{\operatorname{dim}\left(\mathrm{K}_{1}, Q_{1}\right) \operatorname{dim}\left(\mathrm{K}_{2}, Q_{2}\right)}}\right. \\
& \times \sum_{\mathrm{K}_{1}^{\prime}=\left|Q_{1}\right|,\left|Q_{1}\right|+2, \ldots \mathrm{~K}_{2}^{\prime}=\left|Q_{2}\right|,\left|Q_{2}\right|+2, \ldots}^{\mathrm{K}_{1}} \sum_{\mathrm{K}^{\prime}=|Q|,|Q|+2, \ldots}^{\mathrm{K}_{2}} \Pi_{\mathrm{K}_{1}^{\prime}}^{\mathrm{K}_{1}, Q_{1}} \Pi_{\mathrm{K}_{2}^{\prime}}^{\mathrm{K}_{2}, Q_{2}} \Pi_{\mathrm{K}^{\prime}}^{\mathrm{K},-Q} \\
& \left.\times \frac{2 \pi^{3}}{\left(\frac{\mathrm{~K}_{1}^{\prime}+\mathrm{K}_{2}^{\prime}+\mathrm{K}^{\prime}}{2}+1\right)\left(\frac{\mathrm{K}_{1}^{\prime}+\mathrm{K}_{2}^{\prime}+\mathrm{K}^{\prime}}{2}+2\right)} \delta_{Q_{1}+Q_{2}, Q}\right)^{\frac{1}{2}} \quad \Pi_{\mathrm{K}^{\prime}}^{\mathrm{K}, Q}=\prod_{\mathrm{K}^{\prime \prime}=|Q|, Q \mid+2, \ldots}^{\mathrm{K}^{\prime}-2}\left(1-\frac{(\mathrm{K}+2)^{2}-Q^{2}}{\left(\mathrm{~K}^{\prime \prime}+2\right)^{2}-Q^{2}}\right) \\
& A_{0}^{\mathrm{K}, Q}=(-1)^{\frac{\mathrm{K}-|Q|}{2}}\left(\sum_{\mathrm{K}_{1}, \mathrm{~K}_{2}=|Q|,|Q|+2, \ldots}^{\mathrm{K}} \Pi_{\mathrm{K}_{1}}^{\mathrm{K}, Q} \Pi_{\mathrm{K}_{2}}^{\mathrm{K}, Q} \frac{2 \pi^{3}}{\left(\frac{\mathrm{~K}_{1}+\mathrm{K}_{2}}{2}+1\right)\left(\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2}+2\right)}\right)^{-\frac{1}{2}}
\end{aligned}
$$

Now we can solve problems by h.s. harmonics decomposition

- Schrodinger equation - coupled d.e. in $\psi_{[\mathrm{m}]}^{\mathrm{K}}(R)$:
$\left.-\frac{1}{2 \mu}\left[\frac{d^{2}}{d R^{2}}+\frac{5}{R} \frac{d}{d R}-\frac{\mathrm{K}(\mathrm{K}+4)}{R^{2}}+2 \mu E\right] \psi_{[\mathrm{m}]}^{\mathrm{K}}(R)+V_{\text {ef }} .(R) \sum_{\mathrm{K}^{\prime}\left\{\left[\mathrm{m}^{\prime}\right]\right.} C_{[\mathrm{m}][\mathrm{m}\rangle}^{\mathrm{K}}\right\rangle \psi_{[\mathrm{m} \mid}^{\left.\mathrm{K}^{\prime}\right]}(R)=0$
where:

Realistic potentials for identical particles have only few harmonics!

$$
v_{\mathrm{K}, Q}^{3-\text { body }}=\int \mathcal{Y}_{0,0}^{\mathrm{K}, Q, \nu *}\left(\Omega_{5}\right) V_{3-\text { body }}(\alpha, \phi) d \Omega_{(5!}
$$

$\begin{gathered} 4 \text { out of } \\ 2366 \\ \text { possible } \\ \mathrm{K}<11! \end{gathered}$	(K, Q)	$v_{\mathrm{K} Q}^{\mathrm{Y}}$	$v_{\mathrm{K} Q}^{\triangle}$	$v_{\mathrm{KQ}}^{\text {Coulomb }}$
	$(0,0)$	8.18	16.04	20.04
	$(4,0)$	-0.44	-0.44	2.95
	$(6, \pm 6)$	0	-0.14	1.88
	$(8,0)$	-0.09	-0.06	1.49
	$\sum \frac{\left(v_{\mathrm{K}, Q}^{3-\text { body }}\right)^{2}}{\left(\int\left(V_{3-\text { body }}\right)^{2} d \Omega_{(5)}\right)}$	99\%	99\%	94\%

- Energy and ordering of the states depend only on a few coefficients!

State orderings

Fixed state ordering for $\mathrm{K}=2$:

Delta potential state ordering for $K=4$:

9th MATHEMATICAL PHYSICS MEETING:

School and Conference on Modern Mathematical Physics

Thank you

Hyper-spherical coordinates

- Triangle shape-space parameters:

$$
\begin{aligned}
& R=\sqrt{\boldsymbol{\rho}^{2}+\boldsymbol{\lambda}^{2}} \\
& \hat{\boldsymbol{n}}=\left(\boldsymbol{n}_{1}^{\prime}, \boldsymbol{n}_{2}^{\prime}, \boldsymbol{n}_{3}^{\prime}\right)=\left(\frac{\boldsymbol{\rho}^{2}-\boldsymbol{\lambda}^{2}}{R^{2}}, \frac{2 \boldsymbol{\rho} \cdot \boldsymbol{\lambda}}{R^{2}}, \frac{2(\boldsymbol{\lambda} \times \boldsymbol{\rho})_{3}}{R^{2}}\right)
\end{aligned}
$$

$\begin{gathered}\text { Smith-Iwai } \\ \text { Choice of }\end{gathered}(\sin \alpha)^{2}=\left(\boldsymbol{n}_{1}^{\prime 2}+\boldsymbol{n}_{2}^{\prime 2}\right)=1-\left(\frac{2 \boldsymbol{\rho} \times \boldsymbol{\lambda}}{R^{2}}\right)^{2}$ angles

$$
\phi=-\tan ^{-1}\left(\frac{n_{2}^{\prime}}{n_{1}^{\prime}}\right)=\tan ^{-1}\left(\frac{2 \boldsymbol{\rho} \cdot \boldsymbol{\lambda}}{\boldsymbol{\rho}^{2}-\boldsymbol{\lambda}^{2}}\right)
$$

- Plus angles that fix the position/orientation of the triangle plane (some $\Phi_{1}, \Phi_{2}, \Phi_{3}$)

I - Case of planar motion

- 4 c.m. degrees of freedom - Jacobi coordinates:

$$
x_{\mu}=\left(\rho_{1}, \rho_{2}, \lambda_{1}, \lambda_{2}\right), \quad \mu=1,2,3,4 .
$$

- or spherically $\mathrm{R}, \alpha, \varphi$ and Φ angular momentum
- Hyper-angular momenta - so(4) algebra:

$$
\begin{aligned}
& K_{\mu \nu} \equiv i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \mid \mu, \nu=1, \ldots 4 \\
& T=\frac{m}{2} \dot{R}^{2}+\frac{K_{\mu \nu}^{2}}{2 m R^{2}}
\end{aligned}
$$

Decomposition:

$$
\begin{array}{ccc}
J_{1} \\
s o(4) \\
s o(3) \oplus s o(3) & J_{2} & m_{1} \\
s o(2) \oplus & m_{2} \\
s o(2)
\end{array}
$$

$$
K_{\mu \nu}=\left(\begin{array}{cccc}
0 & K_{12} & K_{13} & K_{14} \\
-K_{12} & 0 & K_{23} & K_{24} \\
-K_{13} & -K_{23} & 0 & K_{34} \\
-K_{14} & -K_{24} & -K_{34} & 0
\end{array}\right) \quad\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\lambda_{1} \\
\lambda_{2}
\end{array}\right)
$$

$$
\begin{aligned}
& L=L_{\rho}+L_{\lambda} \\
& \mathbf{M}=\frac{1}{2}\left(K_{12}+K_{34}, K_{23}+K_{14}, K_{31}+K_{24}\right)
\end{aligned}
$$

$$
\begin{array}{cc}
\mathbf{x}_{1} & \mathbf{N}=\frac{1}{2}\left(K_{12}-K_{34}, K_{23}-K_{14}, \underline{K_{31}-K_{24}}\right)=\mathbf{Q} \\
& \mathbf{Y} \\
& {\left[\mathbf{M}^{i}, \mathbf{M}^{j}\right]=i i^{i j k} \mathbf{M}^{k}}
\end{array}
$$

$$
\left[\mathbf{N}^{i}, \mathbf{N}^{j}\right]=i \varepsilon^{i j k} \mathbf{N}^{k} \quad[Q, \boldsymbol{\rho} \times \boldsymbol{\lambda}]=0
$$

$$
\left[\mathbf{M}^{i}, \mathbf{N}^{j}\right]=0
$$

Y-string potential $=$ the shortest sum of string lengths \leftarrow function of triangle area

Hyper-spherical harmonics

- Labeled by K, L and $Q: \mathcal{Y}_{L, Q}^{K}(\alpha, \phi, \Phi)$
$J_{1}=J_{2}=K / 2=$

$$
\left|\begin{array}{ll}
J_{1} & J_{2} \\
m_{2}
\end{array}\right\rangle=\left|J_{1} m_{1}\right\rangle \otimes\left|J_{2} m_{2}\right\rangle \quad s o(4) \supset s o(3) \oplus s o(3) \supset s o(2) \oplus s o(2)
$$

- Functions coincide with SO(3) Wigner Dfunctions:

$$
\mathcal{Y}_{L, Q}^{K}(\alpha, \phi, \Phi)=\frac{\sqrt{1+K}}{\sqrt{2} \pi} \mathcal{D}_{Q,-L / 2}^{K / 2}(-\phi, \alpha, 2 \Phi)
$$

- Interactions preserve value of L (rotational invariance) and some even preserve Q (area dependant like the Y -string three-quark potential)

Calculations now become much simpler...

- We decompose potential energy into hyperspherical harmonics and split the problem into radial and angular parts:

$$
\begin{gathered}
-\frac{1}{2 m}\left[\frac{d^{2}}{d R^{2}}+\frac{3}{R} \frac{d}{d R}-\frac{K(K+2)}{R^{2}}+2 m E\right] \psi_{c}(R)+V_{\text {eff. }}(R) \sum_{c^{\prime}} C_{c, c^{\prime}} \psi_{c^{\prime}}(R)=0 \\
V_{3-\text { body }}(\alpha, \phi)=\sqrt{\frac{\pi}{2}} \sum_{K_{I}, Q_{I}}^{\infty} v_{K_{I} Q_{I}}^{3-\text { body }} \mathcal{Y}_{0 Q_{I}}^{K_{I}}(\alpha, \phi, \Phi) \\
C_{\left[K^{\prime}\right],[K]}=\delta_{\left[K^{\prime}\right],[K]}+\sum_{K_{I}>0, Q_{I}}^{\infty}\left(\frac{v_{K_{I} Q_{I}}^{3-\text { body }}}{v_{00}^{3-\text { body }}}\right) \sqrt{\frac{\left(K^{\prime}+1\right)\left(K_{I}+1\right)}{(K+1)}} C_{\frac{K_{I}}{2} 0, \frac{K^{\prime}}{2} \frac{L^{\prime}}{2}}^{\frac{K}{2}} C_{\frac{K_{I}}{2} Q_{I}, \frac{K^{\prime}}{2} Q^{\prime}}^{\frac{K^{\prime}}{2}} .
\end{gathered}
$$

II - Case of 3D motion

- 6 c.m. degrees of freedom - Jacobi coordinates:

$$
x_{\mu}=\left(\rho_{1}, \rho_{2}, \rho_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right), \quad \mu=1,2,3,4,5,6 .
$$

- or spherically $\mathrm{R}, \alpha, \varphi$ and some $\Phi_{1}, \Phi_{2}, \Phi_{3}$ Tricky!
- Hyper-angular momenta - so(6) algebra:

$$
\begin{aligned}
& K_{\mu \nu} \equiv i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \mid \mu, \nu=1, \ldots 6 \\
& T=\frac{m}{2} \dot{R}^{2}+\frac{K_{\mu \nu}^{2}}{2 m R^{2}}
\end{aligned}
$$

Particle permutations

- Transformations are easily inferred since:

$$
\begin{aligned}
& P_{12}: \boldsymbol{\rho} \rightarrow-\boldsymbol{\rho}, \boldsymbol{\lambda} \rightarrow \boldsymbol{\lambda} \Rightarrow \boldsymbol{X}^{ \pm} \rightarrow \boldsymbol{X}^{\mp} \\
& P_{13}: \boldsymbol{X}^{ \pm} \rightarrow e^{\mp \frac{2 \pi i}{3} i} \boldsymbol{X}^{\mp} \\
& P_{23}: \boldsymbol{X}^{ \pm} \rightarrow e^{ \pm \frac{2 \pi}{3} i} \boldsymbol{X}^{\mp} \\
& P_{12}: Q \rightarrow-Q, \nu \rightarrow-\nu, K \rightarrow K \\
& P_{12}: \mathcal{Y}_{J, m}^{K Q v}(X) \rightarrow \mathcal{Y}_{J, m}^{K,-Q,-v}(X)
\end{aligned}
$$

Goal in 3-particle case

- Use c.m. system and split the problem into radial and angular parts
- Interaction is not radial-only, but in all realistic interaction potentials "radial" component is dominant - starting point for perturbation approach
- Solve angular part by decomposition to (hyper)spherical harmonics
- Account for some special dynamical symmetries (e.g. Y-string three-quark potential)
- Harmonics provide manifest permutation and rotation properties
- Applications: three quark systems, molecular physics, atomic physics (helium atom), positronium ion...

Hyper-spherical coordinates

- Triangle shape-space parameters:

$$
\begin{aligned}
& \hat{\boldsymbol{n}}=\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{n}_{3}\right)=\left(\boldsymbol{\rho}^{2}-\lambda^{2}, 2 \boldsymbol{\rho} \cdot \boldsymbol{\lambda}, 2|\boldsymbol{\lambda} \times \boldsymbol{\rho}|\right) \\
& R=\sqrt{\boldsymbol{n}_{1}^{2}+\boldsymbol{n}_{2}^{2}+\boldsymbol{n}_{3}^{2}}=\sqrt{\boldsymbol{\rho}^{2}+\boldsymbol{\lambda}^{2}}=\sqrt{\sum_{\mu} x_{\mu}^{2}}
\end{aligned}
$$

$\underset{\text { Smith-lwai }}{\text { Choice of }} \boldsymbol{C}(\sin \alpha)^{2}=\frac{n_{1}^{2}+n_{2}^{2}}{R^{2}}=1-\left(\frac{2 \rho \times \boldsymbol{\lambda}}{R^{2}}\right)^{2}$ angles

$$
\Delta \phi=-\tan ^{-1}\left(\frac{n_{2}}{n_{1}}\right)=\tan ^{-1}\left(\frac{2 \boldsymbol{\rho} \cdot \boldsymbol{\lambda}}{\rho^{2}-\boldsymbol{\lambda}^{2}}\right)
$$

- Plus angles that fix the position/orientation of the triangle plane (some $\Phi_{1}, \Phi_{2}, \Phi_{3}$)

6 dim spherical harmonics = ???

- Let us recall a few facts about standard 3D s.h.
- Functions on sphere: $\mathcal{Y}_{m}^{J \longleftarrow \text { UIR of } S O(3)}$ UIR of $S O(2) \subset S O(3)$

$$
J^{2} \mathcal{Y}_{m}^{J}=J(J+1) \mathcal{Y}_{m}^{J} \quad J_{3} \mathcal{Y}_{m}^{J}=m \mathcal{Y}_{m}^{J}
$$

- Orthogonal:

$$
\frac{1}{4 \pi} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \mathcal{y}_{m}^{J} \mathcal{Y}_{m^{\prime}, *}^{J^{*} d \Omega=\delta_{J J} \delta m m^{\prime}} \quad \nabla^{2} \mathcal{P}_{m}^{J}=0
$$

- E.g.:

$$
\begin{array}{rlrl}
Y_{1}^{-1}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x-i y)}{r} & Y_{2}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta \cdot \cos \theta=\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x-i y) z}{r^{2}} \\
Y_{1}^{0}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \frac{z}{r} & Y_{2}^{0}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot\left(3 \cos ^{2} \theta-1\right)=\frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot \frac{\left(2 z^{2}-x^{2}-y^{2}\right)}{r^{2}} \\
Y_{1}^{1}(\theta, \varphi) & =\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta & =\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x+i y)}{r} & Y_{2}^{1}(\theta, \varphi)=\frac{-1}{2} \sqrt{\frac{15}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta \cdot \cos \theta=\frac{-1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y) z}{r^{2}} \\
& Y_{2}^{2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot e^{2 i \varphi} \cdot \sin ^{2} \theta=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y)^{2}}{r^{2}}
\end{array}
$$

D-dim hyper-spherical harmonics

- Intuitively: natural basis for functions on D-dim sphere
- Functions on SO(D)/SO(D-1) - transform as traceless symmetric tensor representations (only a subset of all tensorial UIRs)
- UIR labeled by single integer K, highest weight ($K, 0,0, \ldots$) <=> K boxes in a single row <=> $K(K+D-2)$ quadratic Casimir eigenvalue
- Homogenous harmonic polynomials (obeying Laplace eq. = traceless) of order K restricted to unit sphere
- Harmonics of order K are further labeled by appropriate quantum numbers, usually related to $\mathrm{SO}(\mathrm{D})$ subgroups
${ }_{v}[\bar{Q}, \boldsymbol{\rho} \times \boldsymbol{\lambda}]=0{ }_{\mathrm{SO}(6)}$

Quantum numbers E.g. in su(3) context often is used operator $\sum_{i j} J_{i} Q_{i j} J_{j}$

- Labels of $\mathrm{SO}(6)$ hyper-spherical harmoníics

$U(1) \otimes S O(3)_{\text {rot }} \subset U(3) \subset S O(6)$

Long way to the explicit expressions...

- Building blocks - two SO(3) vectors X^{+}and X^{-}
- Start from polynomials sharp in Q:

$$
\mathcal{P}_{J_{+} m_{+} J_{-} m_{-}}^{d_{-}}(X)=\left(X^{+} \cdot X^{+}\right)^{\frac{d_{+}-J_{+}}{2}} \tilde{3}_{3, m_{+}}^{J_{+}}\left(X^{+}\right)\left(X^{-} \cdot X^{-}\right)^{\frac{d^{--J}}{2}} \tilde{y}_{3, m_{-}}^{J-}\left(X^{-}\right)
$$

- Define "core polynomials" sharp in J, m and Q:
- Make them harmonic by finding ortho-complement w.r.t. polynomials with lesser K, i.e.: $\mathcal{P}_{\mathcal{H}\left(J_{+} J_{-}\right) J, m}^{K}(X)=\mathcal{P}_{\left(J_{+} J_{-}\right) J_{, m}}^{\bar{K} Q}(X)-\sum_{a} c_{a} R^{\bar{K}-K_{a}} \mathcal{P}_{a}(X)$,
- Finally, remove remaining degeneracy, i.e. introduce multiplicity label.

After all that we can...

...explicitly calculate the harmonics in Wolfram Mathematica...
$\mathrm{Y}\{0,0,0,0,0\}=\frac{1}{\pi^{3 / 2}}$
$\mathrm{Y}\{1,-1,1,1,2\}=\frac{\sqrt{\frac{3}{2}} \mathrm{X}[1,-1]}{\pi^{3 / 2}}$
$\mathrm{Y}\{1,1,1,1,-2\}=\frac{\sqrt{\frac{3}{2}} \mathrm{X}[1,1]}{\pi^{3 / 2}}$
$\mathrm{Y}\{2,-2,0,0,0\}=\frac{\sqrt{2} \mathrm{Xsq}[-1]^{2}}{\pi^{3 / 2}}$
$\mathrm{Y}\{2,-2,2,2,6\}=\frac{\sqrt{\frac{3}{2}} \mathrm{X}[1,-1]^{2}}{\pi^{3 / 2}}$
$Y\{2,0,1,1,0\}=\frac{\sqrt{3}(X[0,1] X[1,-1]-X[0,-1] X[1,1])}{\pi^{3 / 2}}$
$\mathrm{Y}\{2,0,2,2,0\}=\frac{\sqrt{3} \mathrm{X}[1,-1] \mathrm{X}[1,1]}{\pi^{3 / 2}}$

$$
\begin{aligned}
& \mathrm{Y}\{2,2,0,0,0\}=\frac{\sqrt{2} \mathrm{Xsq}[1]^{2}}{\pi^{3 / 2}} \\
& \mathcal{V}\{K, Q, J, m, \nu\} \\
& \mathrm{Y}\{2,2,2,2,-6\}=\frac{\sqrt{\frac{3}{2}} \mathrm{X}[1,1]^{2}}{\pi^{3 / 2}} \\
& \mathrm{Y}\{3,-3,1,1,2\}=\frac{\sqrt{3} \mathrm{X}[1,-1] \mathrm{Xsq}[-1]^{2}}{\pi^{3 / 2}} \\
& \mathrm{Y}\{3,-3,3,3,12\}=\frac{\sqrt{5} \times[1,-1]^{3}}{2 \pi^{3 / 2}} \\
& \mathrm{Y}\{3,-1,1,1,-6\}=\frac{\sqrt{6}\left(-\frac{1}{2} \mathrm{Xsq}^{2} \mathrm{X}[1,-1]+\mathrm{X}[1,1] \mathrm{Xsq}[-1]^{2}\right)}{\pi^{3 / 2}} \\
& \mathrm{Y}\{3,-1,2,2,10\}=\frac{\sqrt{5} \mathrm{X}[1,-1](\mathrm{X}[0,1] \mathrm{X}[1,-1]-\mathrm{X}[0,-1] \mathrm{X}[1,1])}{\pi^{3 / 2}} \\
& \mathrm{Y}\{3,-1,3,3,4\}=\frac{\sqrt{15} \times[1,-1]^{2} \mathrm{X}[1,1]}{2 \pi^{3 / 2}} \\
& \mathrm{Y}\{3,1,1,1,6\}=\frac{\sqrt{6}\left(-\frac{1}{2} \times s q^{2} \times[1,1]+\mathrm{X}[1,-1] \mathrm{Xsq}[1]^{2}\right)}{\pi^{3 / 2}}
\end{aligned}
$$

Particle permutations

- Transformations are easily inferred since:
$\mathcal{T}_{12}: \quad \lambda \rightarrow \lambda, \quad \rho \rightarrow-\rho$,
$\mathcal{T}_{23}: \quad \boldsymbol{\lambda} \rightarrow-\frac{1}{2} \boldsymbol{\lambda}+\frac{\sqrt{3}}{2} \boldsymbol{\rho}, \quad \boldsymbol{\rho} \rightarrow \frac{1}{2} \boldsymbol{\rho}+\frac{\sqrt{3}}{2} \boldsymbol{\lambda}$,
$\mathcal{T}_{31}: \quad \boldsymbol{\lambda} \rightarrow-\frac{1}{2} \boldsymbol{\lambda}-\frac{\sqrt{3}}{2} \boldsymbol{\rho}, \quad \rho \rightarrow \frac{1}{2} \rho-\frac{\sqrt{3}}{2} \boldsymbol{\lambda}$.

$$
\begin{gathered}
\mathcal{T}_{12}: X_{i}^{ \pm} \rightarrow X_{i}^{\mp}, \quad \mathcal{T}_{23}: X_{i}^{ \pm} \rightarrow e^{ \pm \frac{2 i \pi}{3}} X_{i}^{\mp}, \quad \mathcal{T}_{31}: X_{i}^{ \pm} \rightarrow e^{\mp \frac{2 i \pi}{3}} X_{i}^{\mp} \\
- \\
\mathcal{T}_{a b}: Q \rightarrow-Q, K \rightarrow K, J_{i j} \rightarrow J_{i j}, \nu \rightarrow \pm \nu
\end{gathered}
$$

"Core polynomials"

- Building blocks - two SO(3) vectors X^{+}and X^{-}
- Start from polynomials sharp in Q:

$$
\left.\mathcal{P}_{J_{+}+m_{+} J-m_{-}}^{d_{-}}(X)=\left(\boldsymbol{X}^{+} \cdot \boldsymbol{X}^{+}\right)^{\frac{d_{+}-J_{+}}{2}} \tilde{\mathcal{H}}_{3, m_{+}}^{J_{+}}\left(X^{+}\right) \right\rvert\,\left(\boldsymbol{X}^{-} \cdot \boldsymbol{X}^{-}\right)^{\frac{d_{--}-J_{-}}{2}}{\tilde{\mathcal{H}_{3}} J_{-}^{-}\left(X^{-}\right)}^{-}
$$

- Define "core polynomials" sharp in J, m and Q:

Core polynomial

$$
\begin{aligned}
& \mathcal{P}_{\left(J_{+} J_{-}\right) J, m}^{\bar{K} Q}(X) \equiv \sum_{m_{+}, m_{-}} C_{m_{+} m-}^{J_{+} J_{-}} \bar{P}_{n} \mathcal{P}_{J_{+} m_{+} J_{-} m_{-}}^{\frac{K+Q}{2} \frac{K-Q}{2}}(X) \\
& \text { ins } \\
& \text { ins } J_{+}+J_{-}=J \text { or } J_{+}+J_{-}=J+1
\end{aligned}
$$

certainly contains component with
$\bar{K}=K$ but also lower K components

"Harmonizing" polynomials

- Let $\mathcal{P}_{a}(X), a=1,2,3 \ldots$ be shortened notation for all core polynomials with K values less than some given \bar{K}
- Harmonic polynomials are obtained as orthocomplement w.r.t. polynomials with lesser K, i.e.:

$$
\mathcal{P}_{\mathcal{H}\left(J_{+} J_{-}\right) J_{m}}^{\bar{K} Q}(X)=\mathcal{P}_{\left(J_{+} J_{-}\right) J_{, m}}^{\bar{K} Q}(X)-\sum_{a} c_{a} R^{\bar{K}-K_{a}} \mathcal{P}_{a}(X),
$$

where c_{a} are deduced from requirement:
Scalar product of

Scalar product of polynomials on

$$
\begin{aligned}
& \left\langle\mathcal{P}_{\left(J_{+}^{\prime} J_{-}^{\prime}\right) J^{\prime}, m^{\prime}}^{\bar{K} Q^{\prime}} \mid \mathcal{P}_{\left(J_{+} J_{-}\right) J, m}^{\bar{K} Q}\right\rangle=\delta_{m m^{\prime}}\left\langle\mathcal{P}_{\left(J_{+}^{\prime} J_{-}^{\prime}\right) J^{\prime}, J^{\prime}}^{\bar{K} Q^{\prime}} \mid \mathcal{P}_{\left(J_{+} J_{-}\right) J, J}^{\bar{K} Q}\right\rangle \\
& \int \frac{2 \pi^{3} \delta_{Q Q^{\prime}} \delta_{J J^{\prime}} \delta_{m m^{\prime}}}{\left(2+\frac{K+F^{2}}{2}\right)!} \sum_{l=0}^{\frac{k^{+}}{2}} 2^{2 l+J_{+}+J_{-}^{\prime}}\left(\frac{\frac{k+}{2}}{l}\right) . \\
& \binom{\frac{k^{+}}{2}+J_{+}-J_{+}^{\prime}}{\frac{k+}{2}-l}\left(l+J_{+}\right)!\left(l+J_{-}^{\prime}\right)!\left(k^{+}-2 l\right)! \\
& \text { if } \bar{K}-J \equiv \bar{K}^{\prime}-J^{\prime} \equiv 0 \quad(\bmod 2) \\
& \frac{2 \pi^{3} \delta_{Q Q^{\prime}} \delta_{J J} \delta_{m m^{\prime}}}{\left(2+\frac{\overline{K+K^{\prime}}}{2}\right)!} \frac{2 \sqrt{J_{+} J_{-} J_{+}^{\prime} J_{-}^{\prime}}}{1+J} \sum_{l=0}^{\frac{k^{+}}{2}} 2^{2 l+J_{+}+J_{-}^{\prime}}\left(\frac{k^{+}}{\frac{2}{2}} l\right) . \\
& \left(\binom{\frac{k^{+}+J^{2}}{2}+J_{+}^{\prime}}{\frac{k+}{2}-l}\left(l+J_{+}-1\right)!\left(l+J_{-}^{\prime}-1\right)!\left(k^{+}-2 l+1\right)!\frac{!+J+1}{2} \quad \text { if } \bar{K}-J \equiv \bar{K}^{\prime}-J^{\prime} \equiv 1 \quad(\bmod 2)\right. \\
& \left.-\binom{\frac{k^{+}}{2}+J_{+}-J_{+}^{\prime}}{\frac{k+}{2}-l-1}\left(l+J_{+}\right)!\left(l+J_{-}^{\prime}\right)!\left(k^{+}-2 l\right)!\right) \\
& \text { if } \bar{K}-J \not \equiv \overline{K^{\prime}}-J^{\prime}(\bmod 2),
\end{aligned}
$$

- that for core polynomials eventually leads to a closed-form expression...
- Integral of any number of polynomials can be evaluated (e.g. matrix elements)
E.g. this can be $(\rho \times \lambda)^{2}$ or often used operator $\sum_{i j} J_{i} Q_{i j} J_{j}$
- Exist nonorthogonal $\mathcal{P}_{\mathcal{H}}^{\left(J_{+} J_{-}\right) J, m}{ }^{K Q}(X)$ and $\mathcal{P}_{\mathcal{H}_{\left(J_{+}^{+} J_{-}^{\prime}\right) J, m}^{K Q}}(X)$
- Degenerated subspace: $\left\{\mathcal{P}_{\mathcal{H}_{a}} \mid a=1,2, \ldots \operatorname{dim} V_{J, m}^{K, Q}\right\}$
- We remove multiplicity by using physically appropriate operator $\mathcal{V},[\mathcal{V}, Q]=\left[\mathcal{V}, J_{i j}\right]=0$ and obtain orthonormalized spherical harmonic polynomials as:

$$
Y_{a}(X)=\sum_{b}\left(M^{-\frac{1}{2}} U\right)_{a b} \mathcal{P}_{\mathcal{H} b}
$$

- where $M_{a b} \equiv\left\langle\mathcal{P}_{\mathcal{H}_{a}} \mid \mathcal{P}_{\mathcal{H} b}\right\rangle$ and U is a matrix such that:

$$
U^{-1}\left(M^{-\frac{1}{2}} \mathcal{V} M^{-\frac{1}{2}}\right) U=\operatorname{diag}\left(v_{1}, v_{2}, \ldots v_{\operatorname{dim}}\right)
$$

Now we can solve problems by h.s.h. decomposition

- Schrodinger equation - coupled d.e. in $\psi_{[\mathrm{m}]}^{\mathrm{K}}(R)$:
$-\frac{1}{2 \mu}\left[\frac{d^{2}}{d R^{2}}+\frac{5}{R} \frac{d}{d R}-\frac{\mathrm{K}(\mathrm{K}+4)}{R^{2}}+2 \mu E\right] \psi_{[\mathrm{m}]}^{\mathrm{K}}(R)+V_{\text {eff }}(R) \sum_{\mathrm{K}^{\prime},\left[\mathrm{m}^{\prime}\right]} C_{[\mathrm{m}]\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}} \psi_{\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime}}(R)=0$
- where:
$C_{\left[\mathrm{m}^{\prime \prime}\right]\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime \prime}, K^{\prime}}=\delta_{\mathrm{K}^{\prime \prime}, \mathrm{K}^{\prime}} \delta_{\left[\mathrm{m}^{\prime \prime}\right],\left[\mathrm{m}^{\prime}\right]}+\pi \sqrt{\pi} \sum_{\mathrm{K}>0, Q}^{\infty} Q_{K_{\mathrm{K}}}^{v_{00}^{3-\operatorname{body}}}\left\langle\mathcal{D}_{\left[\mathrm{m}^{\prime \prime}\right]}^{\left.\mathrm{K}^{\prime \prime}\right]}\left(\Omega_{5}\right)\right| \mathcal{Y}_{00}^{\mathrm{KQv}}(\alpha, \phi)\left|\mathcal{Y}_{\left[\mathrm{m}^{\prime}\right]}^{\mathrm{K}^{\prime}}\left(\Omega_{5}\right)\right\rangle$
- In the first order p.t. this can be diagonalized into:

$$
\left[\frac{d^{2}}{d R^{2}}+\frac{5}{R} \frac{d}{d R}-\frac{\mathrm{K}(\mathrm{~K}+4)}{R^{2}}+2 \mu\left(E-V_{\left[\mathrm{m}_{d}\right]}^{\mathrm{K}}(R)\right)\right] \psi_{\left[\mathrm{m}_{d}\right]}^{\mathrm{K}}(R)=0
$$

Quantum numbers E.g. in su(3) context often is used operator $\sum_{i j} J_{i} Q_{i j} J_{j}$

- Labels of $\mathrm{SO}(6)$ hyper-spherical harmoníics

$U(1) \otimes S O(3)_{\text {rot }} \subset U(3) \subset S O(6)$

