3-flavor extension of the excluded volume model for the hard-core repulsion

Dyana C. Duarte

In collaboration with Saul Hernandez and Kie Sang Jeong

12th Excited QCD, Krynica Zdrój, Poland

Outline

- Motivation;
- Quarkyonic matter;
- Excluded Volume Model;
- Some Numerical Results;
- Final Remarks

Motivation

• Observation and analysis of GW170817: Important clues to understand cold

and dense matter.

• EoS should be hard enough to support $2M_{\odot}$ and soft enough to satisfy $R_{1.4} \le 13.5$ km.

• This is also reflected in sound velocity, that should inscrease rapidly and can be greater then its conformal value $c_s^2 \ge 1/3$.

F. J. Fattoyev et. al, PRL 120, 172702 (2018)

Motivation

 $R_{1.4} \le 13.5$ km inferred by tidal deformability observed in neutron star inspiral with 90% credence, and subsequent analyses suggests even more compact neutron stars: Need for not too hard EoS for intermediate density.

- Inclusion of some other particle?
- Repulsive nuclear interaction is enough?
- Phase transition to quark matter?

Motivation

 $R_{1.4} \le 13.5$ km inferred by tidal deformability observed in neutron star inspiral with 90% credence, and subsequent analyses suggests even more compact neutron stars: Need for not too hard EoS for intermediate density.

- Inclusion of some other particle?
- Repulsive nuclear interaction is enough?
- Phase transition to quark matter?

Another candidate: Quarkyonic matter

Phase of dense matter, argued from large N_c approximation and model computations.

- $\rightarrow g^2 N_c T^2 \sim T^{2}$
- → Dynamics not affected by quarks;
- → Debye screening at large distances.

Quark loop

- → ~ $\mu_Q^2 g^2$ ⇒ Supressed by $1/N_c$ at large N_c .
- ightharpoonup High density limit: $\mu_Q \gg \Lambda_{\rm QCD}$, so quarks are important when $\mu_Q \sim N_c^{-1/2} \Lambda_{\rm QCD}$.
- → Debye screen mass $m_D \simeq g \mu_Q$

- Different phase in confined world, appear when $\mu_q > M_q$ and n_B becomes nonzero.
- Pressure changes suddenly from $O(N_c^0) \rightarrow O(N_c)$.
- Weakly interacting quark system or baryonic system?

Nuclear Quarkyonic $\begin{cases} \text{For } k_F^{\ B} < \Lambda_{\text{QCD}} \text{: Quarks confined in nucleons.} \\ \text{For } \Lambda_{\text{QCD}} \lesssim k_F^{\ B} \leq N_c \Lambda_{\text{QCD}} \text{: Quarks starts to take} \\ \text{low phase space, and a shell-like structure is formed.} \\ \text{For } k_F^{\ B} \simeq N_c^{3/2} \Lambda_{\text{QCD}} \text{: Confinement disappears.} \end{cases}$

• Total baryon density has smooth behavior and chemical potential for confined states enhance suddenly, then pressure suddenly increases. This is not an usual phase transition!

• Alternative that could take into account the hardness of EoS at low densities and its softness when the density increases.

Quarks and nucleons are quasiparticles: At low T quark states near Fermi surface are confined in the baryon-like states.

Excluded Volume Model

- Need of repulsive interaction to support hard EoS at high density regime.
- Considering a hard core repulsion: Scale can be measured by the effective size of the baryon.
- Protons + Neutrons + Hyperons in an excluded volume $v_0 = 1/n_0$:

$$\varepsilon_N = \left(1 - \frac{n_{\tilde{B}}}{n_0}\right) \sum_{i=n,n,\Lambda} \int_0^{K_F^i} \frac{dkk^2}{\pi^2} \sqrt{k^2 + m_i^2} + \varepsilon_e$$

Excluded Volume Model

- Need of repulsive interaction to support hard EoS at high density regime.
- Considering a hard core repulsion: Scale can be measured by the effective size of the baryon.
- Protons + Neutrons + Hyperons in an excluded volume $v_0 = 1/n_0$:

$$\varepsilon_N = \left(1 - \frac{n_{\tilde{B}}}{n_0}\right) \sum_{i=p,n,\Lambda} \int_0^{K_F^i} \frac{dkk^2}{\pi^2} \sqrt{k^2 + m_i^2} + \varepsilon_e$$
 Electron Excluded volume model:
$$K_F^i = \left(3\pi^2 \frac{n_i}{1 - n_{\tilde{B}}/n_0}\right)^{1/3}$$

3 Flavor Excluded Volume Model

- Provides a hard-soft EoS in the case of single flavor[‡] when considering shell structure.
- Generalization for 3 flavor and inclusion of β -equilibrium and electromagnetic charge neutrality: Possibility of making EoS softer.

$$n_N^{ex} = \sum_{i=p,n,\Lambda} \frac{n_N}{1 - n_{\tilde{B}}/n_0} = 2 \int_0^{K_F^i} \frac{dkk^2}{2\pi^2}$$

$$n_N = n_p + n_n + n_{\Lambda}; \qquad n_{\tilde{B}} = n_p + n_n + (1 + \alpha)n_{\Lambda}; \qquad \mu_i = \frac{\partial \varepsilon}{\partial n_i}$$

3 Flavor Excluded Volume Model

- Provides a hard-soft EoS in the case of single flavor[‡] when considering shell structure.
- Generalization for 3 flavor and inclusion of β -equilibrium and electromagnetic charge neutrality: Possibility of making EoS softer.

$$n_N^{ex} = \sum_{i=p,n,\Lambda} \frac{n_N}{1 - n_{\tilde{B}}/n_0} = 2 \int_0^{K_F^i} \frac{dkk^2}{2\pi^2}$$

$$n_N = n_p + n_n + n_\Lambda;$$
 $n_{\tilde{B}} = n_p + n_n + (1 + \alpha)n_\Lambda;$ $\mu_i = \frac{\partial \varepsilon}{\partial n_i}$

$$\mu_i = \frac{\partial \varepsilon}{\partial n_i}$$

Strength of Λ repulsion

T. Hatsuda, Front. Phys. 13(6), 132105 (2018)

T. Hatsuda, private communication

T. Hatsuda, Front. Phys. 13(6), 132105 (2018)

120 Data → Function → $V^{(27)}$ 100 80 60 V(r) (MeV) -20-40-60 $r \, (fm)$ ~ 0.6 fm

T. Hatsuda, private communication

$$n_{\tilde{B}} = n_p + n_n + (1 + \alpha)n_{\Lambda}$$

3 Flavor Excluded Volume Model: Nucleons only

3 Flavor Excluded Volume Model: Nucleons only

$$\mu_B = \sum_{f=p,n,\Lambda,e} \mu_f \frac{\partial n_f}{\partial n_E}$$

→ Generate singular sound velocity

$$n_N^{ex} = \sum_{i=p,n,\Lambda} \frac{n_N}{1 - (n_{\tilde{B}}/n_0)}$$

$$\mu_B = \sum_{f=p,n,\Lambda,e} \mu_f \frac{\partial n_f}{\partial n_B}$$

Mean Field Mixture: $n_B = n_Q + n_N$ in each point

Protons + Neutrons + Hyperons in an excluded volume + u, d, s quarks.

$$\varepsilon_{\text{mix}} = \left(1 - \frac{n_{\tilde{B}}}{n_0}\right) \sum_{i=p,n,\Lambda} \int_0^{K_F^i} \frac{dkk^2}{\pi^2} \sqrt{k^2 + m_i^2} + \varepsilon_e + \sum_{j=u,d,s} \int_0^{k_F^{Q_j}} \frac{dkk^2}{\pi^2} \sqrt{k^2 + m_j^2}$$

$$n_Q = 2\sum_{j=u,d,s} \int_0^{k_F^{Q_j}} \frac{dkk^2}{2\pi^2}$$

→ Electromagnetic charge neutrality

$$n_e = n_p + 2n_{\tilde{u}} - n_{\tilde{d}} - n_{\tilde{s}}$$

→ Beta equilibrium conditions

$$\mu_n = \mu_p + \mu_e$$

$$\mu_{\tilde{d}} = \mu_{\tilde{u}} + 3\mu_e$$

 \rightarrow Existence of Λ hyperon

$$\mu_{\Lambda} = \mu_n$$

→ Existence of s quark

$$\mu_{\tilde{s}} = \mu_{\tilde{d}}$$

Condition for the minimum of energy density:

$$dn_B = dn_n + dn_Q = 0$$
 from which we obtain $\mu_n = N_c \mu_{\tilde{d}} - \mu_e$

Hard-Soft EoS

Final Remarks

• We study the baryon-quark mixture with three flavor particles in β equilibrium and considering electromagnetic charge neutrality.

• The mean field mixture generates a hard-soft EoS, and in the high density limit the 3-flavor EoS is softer.

• Next step: More realistic model, including the baryon-like shell structure that correctly describes quarkyonic matter (in progress).

$$\varepsilon_{N} = \left(1 - \frac{n_{\tilde{B}}}{n_{0}}\right) \sum_{i=p,n,\Lambda} \int_{K_{F}^{i}}^{K_{F}^{i} + \Delta_{i}} \frac{dkk^{2}}{\pi^{2}} \sqrt{k^{2} + m_{i}^{2}} + \sum_{j=u,d,s} \int_{0}^{k_{F}^{Q_{j}}} \frac{dkk^{2}}{\pi^{2}} \sqrt{k^{2} + m_{j}^{2}}$$

• Next step: More realistic model, including the baryon-like shell structure that correctly describes quarkyonic matter (in progress).

$$\varepsilon_{N} = \left(1 - \frac{n_{\tilde{B}}}{n_{0}}\right) \sum_{i=p,n,\Lambda} \int_{K_{F}^{i}}^{K_{F}^{i} + \Delta_{i}} \frac{dkk^{2}}{\pi^{2}} \sqrt{k^{2} + m_{i}^{2}} + \sum_{j=u,d,s} \int_{0}^{k_{F}^{Q_{j}}} \frac{dkk^{2}}{\pi^{2}} \sqrt{k^{2} + m_{j}^{2}}$$

Thanks for your attention!

