# **Conformal anomaly and fluid dynamics**

# Alina Czajka

#### National Centre for Nuclear Research

in collaboration with S. Hauksson, C. Shen, S. Jeon, C. Gale Phys. Rev. C97 (2018) no. 4, 044914 Phys. Rev. C95 (2017) no. 6, 064906

> Excited QCD 2020, 2-8 February Krynica Zdrój

# Outline

- Introduction and motivation
- Nonequilibrium deviation from the distribution function
- Equations of hydrodynamics with mean field effects
- Bulk viscosity in the relaxation time approximation
- Kubo formula for the bulk relaxation time
- Summary

## **Bulk viscosity**

#### Hydrodynamics: a long-wavelength effective description of interacting systems

Conservation laws + equation of state Transport coefficients: details of microscopic dynamics

#### **Bulk viscosity – a measure of conformal anomaly**

- weak coupling perturbative QCD:
- strong (infinite) coupling string theories:

Phenomenology

$$rac{\zeta}{\eta} \propto \left(rac{1}{3} - c_s^2
ight)^2$$
 $rac{\zeta}{\eta} \propto \left(rac{1}{3} - c_s^2
ight)$ 

k 1 0

Buchel bound:

| // \U | $\frac{\zeta}{\eta}$ | $\geq$ | 2 | $\left(\frac{1}{3}\right)$ | $-c_s^2\Big)$ |
|-------|----------------------|--------|---|----------------------------|---------------|
|-------|----------------------|--------|---|----------------------------|---------------|

Uncertaintities too large Ansatz not reliable

Bulk viscosity strongly peaked near the critical temperature and model-dependent

## **Conformal anomaly**

#### **Trace of the energy-momentum tensor different from zero**

#### **Nonconformality parameters:**

- Microscopic:  $m_0$  zero-temperature mass
  - $\beta_{\lambda}$  fixes the coupling as a function of the energy scale
- Macroscopic:  $\epsilon 3P, \ \frac{1}{3} c_s^2$   $c_s^2 = \frac{dP/dT}{d\epsilon/dT}$
- Motivation: understand physics imposed by conformal anomaly
   work out details on parameters quantifying conformal anomaly: bulk viscosity and its relaxation time

$$\partial_t \Pi = -\frac{\Pi - \Pi_{\rm NS}}{\tau_{\Pi}}$$

# Formulation of hydrodynamic equations with medium dependent effects

A. CZAJKA, FEB 06, EXCITED QCD 2020

## Nonequilibrium vs. equilibrium

The system under study is made of weakly interacting scalar particles, both classical and quantum statistics are considered

Equilibrium

## Nonequilibrium

(well defined state) (small deviations, perturbative corrections to equilibrium quantities)

- Quasiparticle thermal mass Quasiparticle mass Quasiparticle energy
- Quasiparticle four-momentum
- Lorentz invariant measure
- Distribution function

 $m_{\rm eq} \equiv m_{\rm eq}(x)$  $m_x = \sqrt{m_0^2 + m_{\rm eq}^2}$  $E_k = \sqrt{\mathbf{k}^2 + m_x^2}$  $k^{\mu} \equiv (k_0, \mathbf{k}) = (E_k, \mathbf{k})$  $dK = d^3 \mathbf{k} / [(2\pi)^3 E_k]$ 

$$f_0 = 1/[e^{\beta E_k} - 1]$$

 $m_{\rm th} \equiv m_{\rm th}(x)$  $\tilde{m}_x = \sqrt{m_0^2 + m_{\rm th}^2}$  $\mathcal{E}_k = \sqrt{\mathbf{k}^2 + \tilde{m}_x^2}$  $\tilde{k}^{\mu} \equiv (\tilde{k}_0, \mathbf{k}) = (\mathcal{E}_k, \mathbf{k})$  $d\mathcal{K} = d^3 \mathbf{k} / [(2\pi)^3 \mathcal{E}_k]$  $f = f_0 + \Delta f$ 

### Nonequilibrium deviation from the equilibrium distribution function

#### **Boltzmann equation with the mean field contribution**

$$(\tilde{k}^{\mu}\partial_{\mu} - \mathcal{E}_k\nabla\mathcal{E}_k\cdot\nabla_k)f = C[f]$$

All quantities entering the equation are x-dependent

$$f(x,k) = f_{\rm th}(x,k) + \delta f(x,k) = f_0(x,k) + \delta f_{\rm th}(x,k) + \delta f(x,k) \qquad \Delta f(x,k) = \delta f_{\rm th}(x,k) + \delta f(x,k)$$
  
retains equilibrium form  
$$f_{\rm th}(x,k) \equiv f_0(x,k)|_{m_0^2 + m_{\rm eq}^2(x) \to m_0^2 + m_{\rm eq}^2(x) + \Delta m_{\rm th}^2(x)} = \left[ \exp\left(\sqrt{\mathbf{k}^2 + m_0^2 + m_{\rm eq}^2(x) + \Delta m_{\rm th}^2(x)}\beta(x)\right) - 1 \right]^{-1}$$

 $\Delta f = \delta f - \beta f_0 (1 + f_0) \frac{\Delta m_{\rm th}^2}{2E_k}$ 

 $\Delta f = \delta f - T^2 \frac{dm_{eq}^2}{dT^2} \frac{f_0(1+f_0)}{E_k} \frac{\int dK \delta f}{\int dK E_k f_0(1+f_0)}$ 

correction from the nonequilibrium thermal mass

$$T^2 \frac{dm_{\rm eq}^2}{dT^2} = m_{\rm eq}^2 + aT^2\beta_\lambda$$

A. CZAJKA, FEB 06, EXCITED QCD 2020 7

## **Equations of hydrodynamics**

## Local equilibrium hydrodynamics

#### **Energy-momentum tensor:**

$$T_0^{\mu\nu} = \int dK k^{\mu} k^{\nu} f_0 - g^{\mu\nu} U_0 \checkmark$$

## \_ mean-field contribution

- thermodynamic consistency of hydrodynamic equations
- conservation of energy and momentum

$$T_0^{\mu\nu} = \epsilon_0 u^\mu u^\nu - P_0 \Delta^{\mu\nu}$$

$$dU_0 = \frac{q_0}{2} dm_{\rm eq}^2$$

### **Energy density and pressure:**

$$\epsilon_{0} = \bar{\epsilon}_{0} - U_{0}, \qquad \bar{\epsilon}_{0} = \int dK (u_{\mu}k^{\mu})^{2} f_{0}$$
$$P_{0} = \bar{P}_{0} + U_{0} \qquad \bar{P}_{0} = -\frac{1}{3} \int dK \Delta^{\mu\nu} k_{\mu} k_{\nu} f_{0}$$

- Enthalpy not changed:  $\bar{\epsilon}_0 + \bar{P}_0 = \epsilon_0 + P_0$
- Thermodynamic relation satisfied:  $Ts_0 = T \frac{dP_0}{dT} = \epsilon_0 + P_0$

## **Equations of hydrodynamics**

## **Nonequilibrium hydrodynamics**

#### **Energy-momentum tensor:**

$$T^{\mu\nu} = \int d\mathcal{K}\tilde{k}^{\mu}\tilde{k}^{\nu}f - g^{\mu\nu}U \quad \longleftarrow$$

nonequilibrium mean-field contribution

$$U = U_0 + \Delta U \qquad \Delta U = \frac{q_0}{2} \Delta m_{\rm th}^2$$

All quantities contain nonequilibrium thermal mass correction

 $T^{\mu\nu} = T_0^{\mu\nu} + \Delta T^{\mu\nu}$ 

#### **Particular components:**

 $\Delta T^{00} = \int dK E_k^2 \Delta f$   $\Delta T^{0i} = \int dK E_k k^i \Delta f$  $\Delta T^{ij} = \int dK k^i k^j \Delta f - \frac{\Delta m_{\rm th}^2}{2} \int dK \frac{k^i k^j}{E_k^2} f_0 + \delta^{ij} \frac{\Delta m_{\rm th}^2}{2} \int dK f_0$ 

## **Equations of hydrodynamics**

## Nonequilibrium hydrodynamics (local rest frame)

Landau matching is defined by the eigenvalue problem:  $u_{\mu}T^{\mu\nu} = \epsilon u^{\nu}$ 

Local rest frame:  $u^{\mu} = (1, 0, 0, 0)$   $T^{0i} = 0$   $T^{0i} = 0$   $\Delta T^{0i} = 0$ 

#### Landau matching conditions:

$$\int dK E_k k^i \delta f = 0 \qquad \qquad \int dK \left[ E_k^2 - T^2 \frac{dm_{eq}^2}{dT^2} \right] \delta f = 0$$

**Contains the medium correction** 

### **Viscous corrections:**

$$\Delta T^{ij} = \int dK k^i k^j \delta f$$

$$\pi^{ij} = \int dK k^{\langle i} k^{j\rangle} \delta f$$
$$\Pi = \frac{1}{3} \int dK \mathbf{k}^2 \delta f$$

# Known structures but x-dependent mass enters the equations

## **Bulk viscosity**

## **Anderson-Witting model**

#### **Boltzmann equation in the Anderson-Witting model**

$$\left(\tilde{k}^{\mu}\partial_{\mu} - \mathcal{E}_{k}\nabla\mathcal{E}_{k}\cdot\nabla_{k}\right)f = -\frac{\left(u\cdot\tilde{k}\right)}{\tau_{R}}\Delta f$$

#### LHS of the Boltzmann equation dictates the form of RHS

 $\delta f(k) = f_0(k)(1 + f_0(k))\phi(k)$ 

$$\Delta f(k) = f_0(k)(1 + f_0(k)) \left( \phi(k) - \frac{T^2}{E_k} \frac{dm_{eq}^2}{dT^2} \frac{\int dK \phi(k) f_0(k)(1 + f_0(k))}{\int dK E_k f_0(k)(1 + f_0(k))} \right)$$

 $\phi = \phi_{\rm s} + \phi_{\rm b}$  (shear part + bulk part)

## **Transport coefficients**

## **Anderson-Witting model: bulk viscosity**

Solution of the A-W model for the bulk part:

$$\phi_{\rm b}(k) = \beta \tau_R(\partial_i u^i) (c_s^2 - 1/3) \left( E_k - \frac{1}{E_k} \frac{J_{3,0} - T^2 (dm_{\rm eq}^2/dT^2) J_{1,0}}{J_{1,0} - T^2 (dm_{\rm eq}^2/dT^2) J_{-1,0}} \right) \qquad \delta f = f_0 (1 + f_0) \phi$$

Bulk viscosity can be computed using: 
$$\ \Pi = M \int dK \delta f$$
 and  $\ \Pi = -\zeta \partial_i u^i$ 

## Nonconformality parameter:

Microscopic:  $M = -\frac{1}{3} \left( m_0^2 - a\beta_\lambda T^2 \right)$  the consequence of mean field corrections Macroscopic:  $c_s^2 = \frac{dP_0/dT}{d\epsilon_0/dT}$   $\stackrel{\frown}{\longrightarrow}$   $\frac{1}{3} - c_s^2 = -\frac{MJ_{1,0}}{J_{3,0} - T^2(dm_{eq}^2/dT^2)J_{1,0}}$ 

## **Bulk viscosity**

## **Anderson-Witting model**

Shear viscosity is not influenced by the mean field in the leading order

 $\frac{\eta}{\tau_R} = \frac{\epsilon_0 + P_0}{5}$ 

Bulk viscosity of the Boltzmann (classical) gas:

$$\frac{\zeta_{\rm Boltz}}{\tau_R} \propto T^4 \left(\frac{1}{3} - c_s^2\right)^2$$

Bulk viscosity of the Bose-Einstein (quantum) gas:

$$\frac{\zeta}{\tau_R} \propto T^4 \left(\frac{1}{3} - c_s^2\right)^2 \frac{T}{m_x}$$

Effect of the cut-off of infrared divergencies

# Relaxation time approximation can be too crude to obtain a reliable form of bulk viscosity

# **Kubo formula for bulk relaxation time**

A. CZAJKA, FEB 06, EXCITED QCD 2020

## **Quantum-theoretical approach**

## Hydrodynamic modes



# Quantum-theoretical approach Linear response theory

#### Viscous hydrodynamics is a perfect realization of the linear response theory

deviation of a given observable from equilibrium ----- equilibrium retarded response function

Linear response to transverse fluctuations:

$$\delta \langle \hat{T}^{x0}(t,k_y) \rangle = \beta_x(k_y) \int dt' \bar{G}_R^{x0,x0}(t-t',k_y) \theta(-t') e^{\varepsilon t'}$$

direction of the fluid velocity direction of the momentum diffusion

Linear response to longitudinal fluctuations:

$$\delta \langle \hat{T}^{00}(t, \mathbf{k}) \rangle = \beta_0(\mathbf{k}) \int dt' \bar{G}_R^{00,00}(t - t', \mathbf{k}) \theta(-t') e^{\varepsilon t'}$$

# Quantum-theoretical approach Gravitational Ward identity

conservation of the energy-momentum current in terms of the correlation function

$$k_{\alpha} \left( \bar{G}^{\alpha\beta,\mu\nu}(k) - g^{\beta\mu} \langle \hat{T}^{\alpha\nu} \rangle - g^{\beta\nu} \langle \hat{T}^{\alpha\mu} \rangle + g^{\alpha\beta} \langle \hat{T}^{\mu\nu} \rangle \right) = 0$$

- Stress-energy tensor represents the conservation laws and the generators of the space-time evolution
- Ward identity introduces constraints on the stress-energy response functions

#### stress-energy retarded correlation function

$$\bar{G}_{R}^{ij,mn}(x,y) = -\delta^{(4)}(x-y) \left( \delta^{jm} \langle \hat{T}^{in}(y) \rangle + \delta^{jn} \langle \hat{T}^{im}(y) \rangle - \delta^{ij} \langle \hat{T}^{mn}(y) \rangle \right) -i\theta(x_0 - y_0) \left\langle [\hat{T}^{ij}(x), \hat{T}^{mn}(y)] \right\rangle$$

# Parametrization of the longitudinal fluctuations response function

#### 1. Consequences of gravitational Ward identity

$$\omega^4 \bar{G}_R^{00,00}(\omega,\mathbf{k}) = \omega^4 \epsilon - \omega^2 \mathbf{k}^2 (\epsilon + P) + \mathbf{k}^4 \bar{G}_L(\omega,\mathbf{k})$$

**2.** Hydrodynamic limit  $\omega \rightarrow 0$ 

$$\bar{G}_L(\omega, \mathbf{k}) \approx \frac{\omega^2}{\mathbf{k}^2} (\epsilon + P) + \frac{\omega^4}{\mathbf{k}^4} \left( \bar{G}_R^{00,00}(0, \mathbf{k}) - \epsilon \right)$$

#### 3. General properties of the retarded Green function

 $\operatorname{Re} G_R(\omega, \mathbf{k}) = \operatorname{Re} G_R(-\omega, \mathbf{k}) \qquad \operatorname{Im} G_R(\omega, \mathbf{k}) = -\operatorname{Im} G_R(-\omega, \mathbf{k})$ 

# Parametrization of the longitudinal fluctuation response function

Most general form of the function:

$$\bar{G}_L(\omega, \mathbf{k}) = \frac{\omega^2(\epsilon + P + \omega^2 Q(\omega, \mathbf{k}))}{\mathbf{k}^2 - \frac{\omega^2}{Z(\omega, \mathbf{k})} + i\omega^3 R(\omega, \mathbf{k})}$$

All functions *Q*, *Z*, and *R* have the forms:  $Q(\omega, \mathbf{k}) = Q_R(\omega, \mathbf{k}) - i\omega Q_I(\omega, \mathbf{k})$ 

All components are real-valued even functions of  $\omega$  and  $\mathbf{k}$  $Z_R$  and  $R_R$  have non-zero limits when  $\omega \to 0$ ,  $\mathbf{k} \to 0$ All other parts of Q, R, and Z have finite limits when  $\omega \to 0$ ,  $\mathbf{k} \to 0$ 

Only small frequency and wavevector limits of the correlation function are important

# **Constitutive relationships**

pole structure of  $\bar{G}_L \quad 0 = \omega^4 (Z_I(\omega, \mathbf{k}) R_R(\omega, \mathbf{k}) + R_I(\omega, \mathbf{k}) Z_{R1}(0, \mathbf{k})) - \omega^2 \mathbf{k}^2 Z_{R2}(\omega, \mathbf{k})$   $-\omega^2 + \mathbf{k}^2 Z_{R1}(0, \mathbf{k}) - i\omega \mathbf{k}^2 Z_I(\omega, \mathbf{k}) + i\omega^3 R_R(\omega, \mathbf{k}) Z_{R1}(0, \mathbf{k})$  $-i\omega^5 (R_I(\omega, \mathbf{k}) Z_I(\omega, \mathbf{k}) + R_R(\omega, \mathbf{k}) Z_{R2}(\omega, \mathbf{k})) - \omega^6 R_I(\omega, \mathbf{k}) Z_{R2}(\omega, \mathbf{k})$ 

dispersion relation of the sound mode

$$0 = -\omega^2 + v_s^2 \mathbf{k}^2 + i\omega(\tau_\pi + \tau_\Pi) - i\left(\frac{4D_T}{3} + \gamma + v_s^2(\tau_\pi + \tau_\Pi)\right)\omega\mathbf{k}^2$$
$$+\tau_\pi\tau_\Pi\omega^4 - \left(\tau_\pi\tau_\Pi v_s^2 + \tau_\Pi\frac{4D_T}{3} + \tau_\pi\gamma\right)\omega^2\mathbf{k}^2 + \mathcal{O}(\mathbf{k}^4)$$

constitutive relationships

$$Z_{R1}(0,0) = v_s^2$$

$$Z_{R2}(0,0) = \tau_{\pi}\tau_{\Pi}v_s^2 + \tau_{\Pi}\frac{4D_T}{3} + \tau_{\pi}\gamma \qquad R_R(0,0) = \frac{\tau_{\pi} + \tau_{\Pi}}{v_s^2}$$

$$Z_I(0,0) = \frac{4D_T}{3} + \gamma + v_s^2(\tau_{\pi} + \tau_{\Pi}) \qquad R_I(0,0) = \frac{v_s^2\tau_{\pi}\tau_{\Pi} - v_s^2(\tau_{\pi} + \tau_{\Pi})^2 - (4D_T/3 + \gamma)(\tau_{\pi} + \tau_{\Pi})}{v_s^4}$$

A. CZAJKA, FEB 06, EXCITED QCD 2020 20

# Kubo formulas related to the bulk flow

$$\frac{4}{3}\eta + \zeta = \lim_{\omega, \mathbf{k} \to 0} \frac{1}{\omega} \operatorname{Im} \bar{G}_L(\omega, \mathbf{k})$$

$$\frac{4}{3}\eta \tau_{\pi} + \zeta \tau_{\Pi} + Q_R v_s^2 = -\frac{1}{2} \lim_{\omega, \mathbf{k} \to 0} \partial_{\omega}^2 \operatorname{Re} \bar{G}_L(\omega, \mathbf{k})$$

$$-2\kappa/3$$

from metric perturbation analysis

Combining these relations with the Kubo formulas related to the shear flow we get

#### Kubo formulas related to the bulk flow

$$\begin{split} \zeta &= \lim_{\omega, \mathbf{k} \to 0} \frac{1}{\omega} \operatorname{Im} \bar{G}_{R}^{PP}(\omega, \mathbf{k}) \\ \zeta \tau_{\Pi} &= -\frac{1}{2} \lim_{\omega, \mathbf{k} \to 0} \partial_{\omega}^{2} \operatorname{Re} \bar{G}_{R}^{PP}(\omega, \mathbf{k}) \end{split}$$

# **Summary and conclusions**

- The form of the nonequilibrium correction to the distribution function found
- Fully consistent incorporation of thermal mean field in the hydrodynamical description of the dynamics of one-component systems
- The physics of bulk viscosity studied for the Boltzmann and Bose-Einstein gases
- Relaxation time approximation can be too crude to study bulk viscosity of the quantum gases with Bose-Einstein distribution
- Kubo formula for the bulk relaxation time found