

Fluctuations of conserved quantities in heavy-ion collisions at high energies

Igor Altsybeev St.Petersburg State University

Excited QCD 2020 Krynica Zdrój, Poland

1

What do we mean by "event-by-event"

In central Pb-Pb collisions at LHC energies, ~2000 particles within $|\eta| < 0.5$.

Many "event-averaged" observables can be studied: particle yields, spectra, flow harmonics...

Event-by-event measurements:

when a given observable is measured on *an event-by-event basis,* and the fluctuations are studied over the ensemble of the events.

fluctuating net-charge, number of protons, mean p_{T} , forward-backward yields, etc.

Why e-by-e fluctuations:

- they help to characterize the properties of the "bulk" of the system
- fluctuations also are closely related to dynamics of the phase transitions

Phase transitions at the LHC

Event-by-event fluctuations in heavy-ion collisions at the LHC make it possible to verify lattice QCD calculations at small values of baryon chemical potential ($\mu_B \approx 0$ at LHC energies).

Thermodynamic susceptibilities χ:

- describe the response of a thermal system to changes in external conditions, fundamental properties of the medium
- can be calculated within lattice QCD
- within the Grand Canonical Ensemble, are related to e-by-e fluctuations of conserved charges: <u>electric charge</u>, <u>strangeness</u>, <u>baryon number</u>

$$\chi_{n}^{B} = \frac{\partial^{n} \left(P / T^{4} \right)}{\partial \left(\mu_{B} / T \right)^{n}}$$

Connection between theory and experiment

Connection between theory and experiment

2 Event-by-event net-proton distributions from STAR

STAR, arXiv:2001.02852

Shape of the event-by-event net-proton distribution is characterized by cumulants κ_n of various orders.

Net-proton cumulant ratios from STAR

- Head-on (central) Au+Au collisions: non-monotonic variation in 4-to-2 cumulant vs Vs_{NN}!
- Non-central Au+Au collisions show a monotonic variation as a function of VsNN.

Models without a critical point do not describe data at the lowest energy.

Connection between theory and experiment

Connection between theory and experiment

Theory:

lattice calculations are done within Grand Canonical Ensemble.

Reality:

- resonance decays
- jets
- global charge conservation

Experiment:

- depends on centrality selection methods
- finite efficiency of particle registration
- need correction for particle mis-identification

correction methods are developed

... Moreover, usually measure net-proton number as a *proxy* for net-baryon number (we typically don't see neutrons, Λ-hyperons are more difficult to measure, etc.).

estimations from models

2 Example of the problem: centrality determination

2 Example of the problem: centrality determination

At low energies (~< 100 GeV), protons from incoming beams start hitting detectors used for centrality determination.

 \Box

Problem with determining centrality classes (i.e. most central). Analyzers are forced to use data from other acceptance regions.

Another challenge: efficiency correction

if p – efficiency of particle registration:

Nonaka et al. PRC 95, 064912 (2017)

- Even for this simple case, correction for cumulants of net-charge $\Delta N = N^+ N^-$ looks like this:

2 Another challenge: efficiency correction

Nonaka et al. PRC 95, 064912 (2017) *if p* – efficiency of particle registration: Even for this simple case, correction for cumulants of net-charge $\Delta N = N^+ - N^-$ looks like this: $\mathbf{K}_{1} = \frac{1}{n} \langle n_{\rm net} \rangle_{\rm c},$ (A1) n_{net} and n_{tot} – measured (uncorrected) values $\mathbf{K}_{2} = \frac{1}{n^{2}} \langle n_{\text{net}}^{2} \rangle_{\text{c}} + \left(-\frac{1}{n^{2}} + \frac{1}{n} \right) \langle n_{\text{tot}} \rangle,$ (A2) $\boldsymbol{K_3} = \frac{1}{n^3} \langle n_{\text{net}}^3 \rangle_{\text{c}} + \left(-\frac{3}{n^3} + \frac{3}{n^2} \right) \langle n_{\text{net}} n_{\text{tot}} \rangle_{\text{c}} + \left(\frac{2}{n^3} - \frac{3}{n^2} + \frac{1}{n} \right) \langle n_{\text{net}} \rangle_{\text{c}},$ (A3) $\mathbf{K_4} = \frac{1}{n^4} \langle n_{\rm net}^4 \rangle_{\rm c} + \left(-\frac{6}{n^4} + \frac{6}{n^3} \right) \langle n_{\rm net}^2 n_{\rm tot} \rangle_{\rm c} + \left(\frac{8}{n^4} - \frac{12}{n^3} + \frac{4}{n^2} \right) \langle n_{\rm net}^2 \rangle_{\rm c} + \left(\frac{3}{n^4} - \frac{6}{n^3} + \frac{3}{n^2} \right) \langle n_{\rm tot}^2 \rangle_{\rm c}$ $+\left(-rac{6}{n^4}+rac{12}{n^3}-rac{7}{n^2}+rac{1}{p}
ight)\langle n_{\mathrm{tot}}
angle_{\mathrm{c}},$ (A4) $\mathbf{K_{5}} = \frac{1}{n^{5}} \langle n_{\text{net}}^{5} \rangle_{\text{c}} + \left(-\frac{10}{n^{5}} + \frac{10}{n^{4}} \right) \langle n_{\text{net}}^{3} n_{\text{tot}} \rangle_{\text{c}} + \left(\frac{20}{n^{5}} - \frac{30}{n^{4}} + \frac{10}{n^{3}} \right) \langle n_{\text{net}}^{3} \rangle_{\text{c}} + \left(\frac{15}{n^{5}} - \frac{30}{n^{4}} + \frac{15}{n^{3}} \right) \langle n_{\text{net}} n_{\text{tot}}^{2} \rangle_{\text{c}}$ $+ \left(-\frac{50}{p^5} + \frac{110}{p^4} - \frac{75}{p^3} + \frac{15}{p^2}\right) \langle n_{\rm net} n_{\rm tot} \rangle_{\rm c} + \left(\frac{24}{p^5} - \frac{60}{p^4} + \frac{50}{p^3} - \frac{15}{p^2} + \frac{1}{p}\right) \langle n_{\rm net} \rangle_{\rm c},$ (A5) $\mathbf{K_6} = \frac{1}{n^6} \langle n_{\rm net}^6 \rangle_{\rm c} + \left(-\frac{15}{n^6} + \frac{15}{n^5} \right) \langle n_{\rm net}^4 n_{\rm tot} \rangle_{\rm c} + \left(\frac{40}{n^6} - \frac{60}{n^5} + \frac{20}{n^4} \right) \langle n_{\rm net}^4 \rangle_{\rm c}$ $+ \left(\frac{45}{n^6} - \frac{90}{n^5} + \frac{45}{n^4}\right) \langle n_{\rm net}^2 n_{\rm tot}^2 \rangle_{\rm c} + \left(-\frac{15}{p^6} + \frac{45}{p^5} - \frac{45}{p^4} + \frac{15}{p^3}\right) \langle n_{\rm tot}^3 \rangle_{\rm c} + \left(-\frac{210}{p^6} + \frac{480}{p^5} - \frac{345}{p^4} + \frac{75}{p^3}\right) \langle n_{\rm net}^2 n_{\rm tot} \rangle_{\rm c}$ $+ \Big(\frac{184}{n^6} - \frac{480}{n^5} + \frac{430}{n^4} - \frac{150}{n^3} + \frac{16}{n^2}\Big) \langle n_{\rm net}^2 \rangle_{\rm c} + \Big(\frac{90}{n^6} - \frac{270}{n^5} + \frac{285}{n^4} - \frac{120}{n^3} + \frac{15}{n^2}\Big) \langle n_{\rm tot}^2 \rangle_{\rm c}$ $+ \left(-\frac{120}{n^6} + \frac{360}{n^5} - \frac{390}{n^4} + \frac{180}{n^3} - \frac{31}{n^2} + \frac{1}{n} \right) \langle n_{\rm tot} \rangle_{\rm c}.$... scaring... (A6)

Why measure at LHC: we probe fluctuations at the cross-over region of the Phase Diagram.

Global vs local charge conservation and cumulants

... So, to compare net-charge fluctuations with theory (=calculations in GCE), charge conservation in each event should be taken into account.

<u>Options:</u>

Global baryon number conservation:

4

pairs are produced independently with y_1^+ and y_2^- within acceptance.

Global vs local charge conservation and cumulants

4

... So, to compare net-charge fluctuations with theory (=calculations in GCE), charge conservation in each event should be taken into account.

Options:

Charge conservation expressed via balance function

5

Balance Function is a measure of correlations between the opposite charges.

Bass et al., Phys. Rev. Lett. 85 (2000) 2689

Example: ALICE, BF for pions:

Charge conservation expressed via balance function

5

Balance Function is a measure of correlations between the opposite charges.

There is a simple straightforward connection between 2nd cumulant and BF:

$$rac{\kappa_2(\Delta N_p)}{\langle N
angle+\langle\overline{N}
angle}=1-\int_{-Y}^YB(\Delta y)igg(1-rac{|\Delta y|}{Y}igg)d\Delta y$$

*first discussed (with some caveats) in C.Pruneau, PRC 100, 034905 (2019).

This work: from balance functions \rightarrow to cumulant ratios

Cumulants of a system of independent sources

5

Distribution of a quantity x Distribution of number of for a single source: sources N_s : \rightarrow cumulants: \rightarrow cumulants: $k_1(x), k_2, k_3, k_4, \dots$ $K_1(N_s), K_2, K_3, K_4, \dots$ X Ns \rightarrow cumulants κ_n of **total event-wise distribution** of X can be calculated via derivatives of MGF: $M_X(t) = [M_x(t)]^{N_S}$ $X = X_i + X_i + ... + X_{N_s}$ $\kappa_{1} = k_{1}K_{1},$ $\kappa_{2} = k_{1}^{2}K_{2} + k_{2}K_{1},$ $\kappa_{3} = k_{1}^{3}K_{3} + 3k_{2}k_{1}K_{2} + k_{3}K_{1},$ $\kappa_{4} = k_{1}^{4}K_{4} + 6k_{2}k_{1}^{2}K_{3} + k_{4}K_{1} + (3k_{2}^{2} + 4k_{1}k_{3})K_{2}$ Rustamov et al., Nucl.Phys.A 960 (2017) 114
Rustamov et al., Nucl.Phys.

> *interesting prospects – strongly intensive cumulants Broniowski, Olszewski, PRC 95, 064910 (2017)

Cumulants of a system of independent sources

... Fortunately, we are interested in the case when $k_1 = \langle \Delta n \rangle = \langle n^+ - n^- \rangle = 0$

(at LHC, same number of baryons and antibaryons at mid-rapidity)

Cumulants of a system of independent sources

source cumulants: $k_n(x)$, cumulants of source distr.: $K_n(N_s)$

Event-wise cumulants $\kappa_1 \dots \kappa_8$ when $\langle \Delta n \rangle = 0$:

$$\begin{aligned} \kappa_{1} &= 0, \\ \kappa_{2} &= k_{2}K_{1}, \\ \kappa_{3} &= k_{3}K_{1}, \\ \kappa_{4} &= 3k_{2}^{2}K_{2} + k_{4}K_{1}, \\ \kappa_{5} &= k_{5}K_{1} + 10k_{2}k_{3}K_{2}, \\ \kappa_{6} &= 15k_{2}^{3}K_{3} + k_{6}K_{1} + (10k_{3}^{2} + 15k_{2}k_{4})K_{2}, \\ \kappa_{7} &= 105k_{3}k_{2}^{2}K_{3} + k_{7}K_{1} + 7(5k_{3}k_{4} + 3k_{2}k_{5})K_{2}, \\ \kappa_{8} &= 105k_{2}^{4}K_{4} + 210k_{4}k_{2}^{2}K_{3} + 280k_{3}^{2}k_{2}K_{3} + k_{8}K_{1} + (35k_{4}^{2} + 56k_{3}k_{5} + 28k_{2}k_{6})K_{2}. \end{aligned}$$

Cumulant ratios, for instance, 4-to-2:

$$\frac{\kappa_4}{\kappa_2}(\Delta N) = \frac{k_4}{k_2}(\Delta n) + 3k_2(\Delta n)\frac{K_2(N_S)}{\langle N_S \rangle}$$

 $X = x_i + x_i + ... + x_{NS}$

... but we need cumulants k_4 , k_2 of a single source...

 $\langle N_S \rangle$

Cumulants of a system with independent + – sources

If the sources are particle-antiparticle pairs, then for a single source:

$$k_4(\Delta n) = k_2(\Delta n) - 3k_2^2(\Delta n)$$

 $\Delta n - for one source$ $\Delta N - for whole system$

... it can be shown using factorial moments of Δn : $K_4 = N - 6K_1^4 + F_{04} + 6F_{03} + 7F_{02} - 2F_{11} - 6F_{12} - 4F_{13} + 7F_{20} - 6F_{21} + 6F_{22} + 6F_{30} - 4F_{31} + F_{40} + 12K_1^2(N + F_{02} - 2F_{11} + F_{20}) - 3(N + F_{02} - 2F_{11} + F_{20})^2 - 4K_1(K_1 - F_{03} - 3F_{02} + 3F_{12} + 3F_{20} - 3F_{21} + F_{30})$ Bzdak, Koch, PRC86 044904 (2012)

 $\frac{\kappa_4}{\kappa_2}(\Delta N) = 1 - 3k_2(\Delta n)$

> For the whole system:

Cumulants of a system with independent + – sources

If the sources are particle-antiparticle pairs, then for a single source:

$$k_4(\Delta n) = k_2(\Delta n) - 3k_2^2(\Delta n)$$

 Δn – for one source ... it can be shown using *factorial moments of* Δn : ΔN – for whole system $K_4 = N - 6K_1^4 + F_{04} + 6F_{03} + 7F_{02} - 2F_{11} - 6F_{12} - 4F_{13} + 7F_{20} - 6F_{21} + 6F_{22} + 6F_{30} - 4F_{31} + F_{40}$ $+12K_{1}^{2}(N + F_{02} - 2F_{11} + F_{20}) - 3(N + F_{02} - 2F_{11} + F_{20})^{2} - 4K_{1}(K_{1} - F_{03} - 3F_{02} + 3F_{12} + 3F_{20} - 3F_{21} + F_{30})$ Bzdak, Koch, PRC86 044904 (2012) K_2 $\frac{\kappa_4}{-}(\Delta N) = 1 - 3k_2(\Delta n)$ For the whole system: κ_2 κ_4 / κ_2 : Thermal bath Y_{max}=8 Gaussian BF (o=0.7) simple models of BF: 1.5 κ₂(N)/(N)=1.24 Gaussian BF $\sigma = 0.7$ κ₂(N_)/(N_)=1.12 Uniform BF d = 1.2 $\kappa_4/\kappa_2(\Delta N_{p,\overline{p}})$ (a) Thermal bath $Y_{max} = 8$ $\kappa_4/\kappa_2(\Delta N_{p,\overline{p}})$ 0.6 (⁄ ∇)8 (b)direct MC calculation analytical calc. based on κ₂ 0.2 analytical calc. based on $\kappa_2 + V.F.$ direct MC calculation analytical calc. based on k₂ ٥L analytical calc. based on κ_2 + V.F. -1 0 Δy 2 6 2 3 0 14

...Can go higher: 6-to-2 cumulant ratio

Does this picture hold in *realistic* model (PYTHIA)?

Good correspondance between *direct* analysis of higher-order cumulants and calculations based on κ₂.

 Locality of particle-antiparticle pairs creation allows, via balance function, to estimate the higher-order cumulant ratios. These ratios can be considered as baseline when comparing with experiment.

Summary

- Event-by-event measurements help to characterize the properties of the "bulk" of the system and also are closely related to dynamics of the phase transitions.
- The cumulants of net-protons are used as a proxy for net-baryons.
 - measured up to 4th order at RHIC non-monotonic behaviour with energy observed.
 - very experimentally challenging analysis need sophisticated corrections and modeling.
 - baryon number conservation and volume fluctuations influence the experimental measurements, while usually not taken into account in theoretical calculations.
- At LHC energies, there is a direct connection between the 2nd cumulants and the balance functions, which are determined by charge conservation. In this work, higher order cumulant ratios κ_4/κ_2 , κ_6/κ_2 were calculated via balance function integral under assumption of local independent production of particle-antiparticle pairs (local baryon conservation).

SK 17K / 1/ DHYN NUW NA DKAIN X 7×3

 Obtained values may be considered as a baseline for comparison with experimental data. paper: I.A., arXiv:2002.11398

Thank you for your attention!

This work is supported by the Russian Science Foundation, grant 17-72-20045. 27