Heavy Flavour measurements in Pb–Pb collisions with the upgraded ALICE Inner Tracking System

Dimitra Andreou
for the ALICE Collaboration

Excited QCD 2020
2-8 February
Krynica Zdrój, Poland
Introduction

Physics motivation for **Inner Tracking System 3 (ITS3)**
High-density QCD future opportunities after LS2

Current status
Talk by L. van Doremalen
Physics motivation

- Physics motivation for Inner Tracking System 3 (ITS3) [arXiv:1812.06772]
- High-density QCD future opportunities after LS2

- Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 - Temperature
 - Thermal radiation at all collision stages
 - Real γ
 - Virtual γ (dileptons)
Physics motivation

- Physics motivation for Inner Tracking System 3 (ITS3) [arXiv:1812.06772]
- High-density QCD future opportunities after LS2

- Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP)
 properties
 - Temperature
 - Transport coefficients

Heavy quark (c, b) diffusion coefficient D_s

Thermalization of heavy quarks in medium $\tau_q = \frac{m_q}{T} D_s$
Physics motivation

• Physics motivation for Inner Tracking System 3 (ITS3)
 • High-density QCD future opportunities after LS2

• Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 • Temperature
 • Transport coefficients

Hadronization through recombination with QGP quarks

Enhanced production of HF baryons (Λ_c, Λ_b)
HF strange mesons (D_s, B_s)

• Investigation of the microscopic parton dynamics underlying QGP properties
 • Heavy Flavour recombination
Physics motivation

• Physics motivation for Inner Tracking System 3 (ITS3)
• High-density QCD future opportunities after LS2

• Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 • Temperature
 • Transport coefficients

• Investigation of the microscopic parton dynamics underlying QGP properties
 • Heavy Flavour recombination

• Development of a unified picture of particle production and QCD dynamics from small to large systems

• Exploration of parton densities in nuclei in a broad kinematic range and search for saturation
Physics motivation

• Physics motivation for *Inner Tracking System 3 (ITS3)*
• High-density QCD future opportunities after LS2

• Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 • Temperature
 • Transport coefficients

• Investigation of the microscopic parton dynamics underlying QGP properties
 • Heavy Flavour recombination

• Development of a unified picture of particle production and QCD dynamics from small to large systems

• Exploration of parton densities in nuclei in a broad kinematic range and search for saturation

Heavy Flavour measurements
ITS3 Upgrade concept

ITS1
- **Inner Radius**: 33mm
- **Layers**: 6
- **Materials**: SPD, SDD, SSD
- **Material Budget**:
 - Inner layers: $\frac{X}{X_0} = 1.14\%$
- **Pixel Size (SPD)**: $50 \times 425 \mu m^2$
- **Readout Rate**: 1kHz (Pb-Pb)

ITS2
- **Inner Radius**: 22mm
- **Layers**: 7
- **Material Budget**:
 - Inner layers: $\frac{X}{X_0} = 0.35\%$
- **Readout Rate**: 100kHz (Pb-Pb)
- **Pixel Size**: $27 \times 29 \mu m^2$

Higher Tracking Resolution & Efficiency

<table>
<thead>
<tr>
<th>ITS1</th>
<th>ITS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Layers
SPD, SDD, SSD
Material Budget $\frac{X}{X_0} = 1.14%$ (inner layers)
Readout rate 1kHz (Pb-Pb)
Pixel size (SPD) $50 \times 425 \mu m^2$
Inner Radius 33mm</td>
<td>7 Layers of MAPS
Material Budget $\frac{X}{X_0} = 0.35%$ (inner layers)
Readout rate 100kHz (Pb-Pb)
Pixel size $27 \times 29 \mu m^2$
Inner Radius 22mm</td>
</tr>
</tbody>
</table>
ITS3 Upgrade concept

ITS1

ITS2

Impact Parameter Resolution

- ALICE
- Current ITS (data)
- Upgraded ITS

Tracking Efficiency

- ALICE
- Current ITS
- Upgraded ITS
ITS3 Upgrade concept

Can we get lighter? Can we get closer?
ITS3 Upgrade concept

Improvements for ITS3

- 3 Cylindrical layers of “massless” wafer-scale sensors
- Thinning to 20 - 40 um and bending of the silicon
- Air Cooling, 20 mW/cm²
- Removal of support structures
- Reduction of material budget 0.35% → 0.05%
- Beam pipe radius 22mm → 18mm
- Approach the interaction point
ITS3 expected performance

Impact Parameter Resolution

- Improvement x2 at all p_T

Tracking Efficiency

- Improvement x2 at low p_T
Heavy Flavour measurements

\[\Lambda_c^+ \rightarrow \pi^+ + p + K^- \]

- PID for rejection of the large combinatorial background (p final state)
- Mean proper decay length \(\Lambda_c^+ : 59 \mu m \)
- High tracking precision for the primary to secondary vertex separation
- Large improvement in \(\Lambda_c^+ \) signal: improved precision
Heavy Flavour measurements

\[\Lambda_b \to \Lambda_c^{+} + \pi^{-}, \quad \Lambda_c^{+} \to \pi^{+} + p + K^{-} \]

- Mean proper decay length \(\Lambda_b \): 417\,\mu m
- Large combinatorial background
- 4 prong final state
- Small B.R.
- Tight topological selection
- Improved vertex resolution important for \(\Lambda_b \) signal selection

\[\theta : \text{pointing angle} \]

\(\text{ALICE Simulation} \)
\(\text{Pb-Pb, } \sqrt{s_{NN}} = 5.5 \, \text{TeV} \)
\(L_{\text{int}} = 10 \, \text{nb} \), 0-20\%
\(6 \leq p_T < 9 \, \text{GeV/c} \)
Heavy Flavour measurements

\[\Lambda_b \rightarrow \Lambda_c^+ + \pi^-, \quad \Lambda_c^+ \rightarrow \pi^+ + p + K^- \]

- Mean proper decay length \(\Lambda_b \) : 417\,\mu m
- Large combinatorial background
- 4 prong final state
- Small B.R.
- Tight topological selection
- Improved vertex resolution important for \(\Lambda_b \) signal selection

\[\theta : \text{pointing angle} \]
Heavy Flavour measurements

$D_s \rightarrow \Phi + \pi \rightarrow K + K + \pi$ (non-prompt)

- Small $c\tau \sim 150\mu m$
- Improvement of significance by a factor of 2 at low p_T
- S/B improvement up to 20 GeV/c
Heavy Flavour measurements

c-deuteron

- $\Lambda_c n$ bound state
- Decay $d + K^- + \pi^+ (\Lambda_c \rightarrow p + K^- + \pi^+)$
- c-deuteron B.R. = B.R. $\Lambda_c \times P(p$ combines with $n)$
- Significance of ITS3 improved by a factor of 2.5
- Signal / Background of ITS3 improved by a factor of 3.3

![Graphs showing signal-to-background ratio for ITS2 and ITS3](image-url)
Conclusions

• Improvement on measurements of small $c\tau$ hadrons
• Improvement on multi-prong final states
• Heavy Flavour Baryon / Meson
 • Λ_b / B enhanced if b recombines
 • Λ_c / D
 • D_s / D
• New prospects
 • B_s through the (non-prompt D_s)
 • $\Xi^+_c , \Xi^0_c , \Omega^0_c$ with ct 130, 30, 20μm (c, s quarks)
Conclusions

• Improvement on measurements of small $c\tau$ hadrons
• Improvement on multi-prong final states
• Heavy Flavour Baryon / Meson
 • Λ_b / B enhanced if b recombines
 • Λ_c / D
 • D_s / D
• New prospects
 • B_s through the (non-prompt D_s)
 • $\Xi_c^+, \Xi_c^0, \Omega_c^0$ with ct 130, 30, 20μm (c, s quarks)

ITS3 - Heavy Flavour
Improvements on challenging channels
Exploration of new channels in Pb-Pb
Thank you!