

Heavy Flavour measurements in Pb–Pb collisions with the upgraded ALICE Inner Tracking System

2-8 February Krynica Zdrój, Poland

Physics motivation for Inner Tracking System 3 (ITS3) High-density QCD future opportunities after LS2

Current status Talk by L. van Doremalen

- Physics motivation for Inner Tracking System 3 (ITS3) arXiv:1812.06772
- High-density QCD future opportunities after LS2
 - Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties Thermal radiation at all collision stages
 - Temperature - Real γ - Virtual γ (dileptons)

ALICE ITS Upgrade

- Physics motivation for Inner Tracking System 3 (ITS3) arXiv:1812.06772
- High-density QCD future opportunities after LS2
 - Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 - Temperature
 - Transport coefficients.

<u>Heavy quark (c, b) diffusion coefficient</u> Ds

 $\frac{m_q}{-D_s}$, Thermalization of heavy quarks in medium $\tau_q=$

- Physics motivation for Inner Tracking System 3 (ITS3) arXiv:1812.06772
- High-density QCD future opportunities after LS2
 - Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 - Temperature

Physics motivation

- Transport coefficients
- Investigation of the microscopic parton dynamics underlying QGP properties
 - Heavy Flavour recombination

HF strange mesons (D_s, B_s)

Physics motivation

- Physics motivation for Inner Tracking System 3 (ITS3) arXiv:1812.06772
- High-density QCD future opportunities after LS2
 - Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 - Temperature
 - Transport coefficients
 - Investigation of the microscopic parton dynamics underlying QGP properties
 - Heavy Flavour recombination
 - Development of a unified picture of particle production and QCD dynamics from small to large systems
 - Exploration of parton densities in nuclei in a broad kinematic range and search for • saturation

Physics motivation

- Physics motivation for Inner Tracking System 3 (ITS3) arXiv:1812.06772
- High-density QCD future opportunities after LS2
 - Characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties
 - Temperature
 - Transport coefficients
 - Investigation of the microscopic parton dynamics underlying QGP properties
 - Heavy Flavour recombination
 - Development of a unified picture of particle production and QCD dynamics from small to large systems
 - Exploration of parton densities in nuclei in a broad kinematic range and search for • saturation

ITS3 Upgrade concept

ITSI

ITS2

Higher Tracking Resolution & Efficiency

ITSI ITS2 • 6 Layers 7 Layers of MAPS SPD, SDD, SSD Material Budget Material Budget X/X₀ I.14% X/X₀ 0.35% (inner layers) (inner layers) Readout rate Readout rate IkHz (Pb-Pb) 100kHz (Pb-Pb) Pixel size (SPD) Pixel size $50 \times 425 \, \mu m^2$ **27 x 29** μm^2 Inner Radius 33mm Inner Radius 22mm

ITS3 Upgrade concept

ALICE ITS Upgrade

ALICE

ITSI

ITS2

ITS2 -----> ITS3 Can we get lighter? Can we get closer?

ITS3 Upgrade concept

Improvements for ITS3

- 3 Cylindrical layers of "massless" wafer-scale sensors
- Thinning to 20 40 um and bending of the silicon
- Air Cooling, 20 mW/cm²
- Removal of support structures
- Reduction of material budget 0.35% → 0.05%
- Beam pipe radius 22mm →18mm
- Approach the interaction point

ITS3 expected performance

ALICE ITS Upgrade

Improvement x2 at all p_T

Improvement x2 at low p_T

ALICE

Heavy Flavour measurements

$$\Lambda_c^+ \to \pi^+ + p + K^-$$

- PID for rejection of the large combinatorial background (p final state)
- Mean proper decay length $\Lambda_{c}^{+}:$ 59µm
- High tracking precision for the primary to secondary vertex separation
- Large improvement in Λ_c^+ signal: improved precision

Heavy Flavour measurements

- Mean proper decay length Λ_b : 417 μ m
- Large combinatorial background
- 4 prong final state
- Small B.R.
- Tight topological selection
- Improved vertex resolution important for Λ_h signal selection

Heavy Flavour measurements

ALICE

$$\Lambda_b \to \Lambda_c^+ + \pi^-, \quad \Lambda_c^+ \to \pi^+ + p + K^-$$

- Mean proper decay length Λ_b : 417 μ m
- Large combinatorial background
- 4 prong final state
- Small B.R.
- Tight topological selection
- Improved vertex resolution important for Λ_b signal selection

Heavy Flavour measurements

- Small $c\tau \sim 150 \mu m$
- Improvement of significance by a factor of 2 at low p_T
- S/B improvement up to 20 GeV/c

c-deuteron

- $\Lambda_c n$ bound state
- Decay $d + K^- + \pi^+$ $(\Lambda_c \rightarrow p + K^- + \pi^+)$
- c-deuteron B.R.= B.R. $\Lambda_c \times P(p \text{ combines with } n)$
- Significance of ITS3 improved by a factor of 2.5
- Signal / Background of ITS3 improved by a factor of 3.3

Conclusions

- Improvement on measurements of small $c\tau$ hadrons
- Improvement on multi-prong final states
- Heavy Flavour Baryon / Meson
 - Λ_b / B enhanced if b recombines
 - Λ_c / D
 - D_s / D
- New prospects
 - B_s through the (non-prompt D_s)
 - Ξ_c^+ , Ξ_c^0 , Ω_c^0 with ct 130, 30, 20 μm (c, s quarks)

Conclusions

- Improvement on measurements of small $c\tau$ hadrons
- Improvement on multi-prong final states
- Heavy Flavour Baryon / Meson
 - Λ_b / B enhanced if b recombines
 - Λ_c / D
 - D_s / D
- New prospects
 - B_s through the (non-prompt D_s)
 - Ξ_c^+ , Ξ_c^0 , Ω_c^0 with ct 130, 30, 20 μm (c, s quarks)

ITS3 - Heavy Flavour

Improvements on challenging channels Exploration of new channels in Pb-Pb

Thank you!