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MOTIVATION: The light scalar controversy. 
Scalar SU(3) multiplets identification controversial

Too many or too few resonances for decades
But there is an emerging picture

f0(980)

κ(800)

a0(980)

A Light scalar nonet:

Singlet

Non-strange heavier!!
Inverted hierarchy problem

For quark-antiquark 

f0(500) and f0(980) are 
really octet/singlet mixtures

f0

K(1430)

a0(1450)

+ Another
heavier scalar nonet:

f0 singlet f0

+ glueball

Enough f0 states have been observed: f0(1370), f0(1500), f0(1700). 
The whole picture is complicated by mixture between them (lots of works here)

Today only the κ(800) or K0*(800) still “Needs Confirmation” @ PDG



Resonances as poles

The universal features of resonances are their 
pole positions and residues *

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈M-i Γ/2

*in the Riemann sheet obtained from an analytic continuation through the physical cut

The Breit-Wigner shape is just an approximation for narrow and isolated resonances 

s-plane
Im s

Re s



Overview of the K0*(800) or “kappa” meson until 2018 @PDG

Omittted from the 2017PDG summary table since, “needs confirmation”

But, all descriptions of data respecting unitarity and chiral symmetry find a pole 
at M=650-770 MeV and Γ~550 MeV or larger.

Best determination comes from a SOLUTION (NO I=1/2, J=0 data below 800 MeV) 
of a Roy-Steiner dispersive formalism, consistent with UChPT

Decotes Genon et al 2006

PDG willing to reconsider situation.. if additional independent dispersive DATA analysis. 

2017PDG dominated by such a SOLUTION

M-i Γ/2=(682±29)-i(273±i12) MeV @PDG2017 

We were encouraged

by PDG members to do it.



Most reliable sets:
Estabrooks et al. 78 (SLAC)
Aston et al.88 (SLAC-LASS)

I=1/2 and 3/2 combination

No clear “peak” or phase movement
of κ/𝐾𝐾0∗(800) resonance

Definitely NO BREIT-WIGNER shape

Mathematically correct to use POLES

Data on πK scattering: S-channel

Strong support for K0*(700) from decays of heavier mesons, but rigorous
model-independent extractions absent. Often inadequate Breit-Wigner formalism

POLE extraction rigorous when using Dispersion Relations
or complex-analyticity properties



Why use dispersion relations?    

CAUSALITY: 
Amplitudes T(s,t) are ANALYTIC in 
complex s plane but for cuts for thresholds.
Crossing implies left cut from u-channel threshold

Cauchy Theorem determines T(s,t) at ANY s, 
from an INTEGRAL on the contour

Good for: 1) Calculating T(s,t) where there is not data

2) Constraining data analysis

3) ONLY MODEL INDEPENDENT extrapolation to complex s-plane
without extra assumptions

If T->0 fast enough at high s, curved part vanishes
Otherwise, determined up to 
a polynomial (subtractions)
Left cut usually a problem



Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?

𝜂𝜂𝐾𝐾𝜋𝜋𝐾𝐾

𝐾𝐾∗(890)

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
zero

Sqrt(s)−plane
(MeV2)
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Analyticity is expressed in the s-variable, not in Sqrt(s)

Important for
the 𝜅𝜅/𝐾𝐾0∗(700)

• Threshold behavior (chiral symmetry)

• Subthreshold behavior (chiral symmetry →Adler zeros)

• Other cuts (Left & circular)

𝜅𝜅/𝐾𝐾0∗(700)

Less important for other resonances…

• Avoid spurious singularities

For partial waves and different masses, additional circular cut 



Our Dispersive/Analytic  Approach for πK and strange resonances

S-waves

D-waves

Even F-waves!!

Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors
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Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 



Since interested in the resonance region, we use minimal number of subtractions

Defining the s↔u symmetric 
and anti-symmetric amplitudes
at t=0 

We need one subtraction for the symmetric amplitude

And none for the antisymmetric

Forward dispersion relations for K π scattering.

where Σ𝜋𝜋𝐾𝐾 = mπ
2+mK

2



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 



(not a solution of dispersión relations,
but a constrained fit)

A.Rodas & JRP, PRD93,074025 (2016)

Forward Dispersion Relation
analysis of 

πK scattering DATA
up to 1.6 GeV

First observation:
Forward Dispersion relations

Not well satisfied by data
Particularly at high energies

So we use 
Forward Dispersion Relations 

as CONSTRAINTS on fits



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)



How well Forward Dispersion Relations are satisfied by unconstrained fits

Define an averaged χ2 over these points, that we call d2

Every 22 MeV calculate the difference between both sides of the DR /uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

2 FDR’s Sum Rules 
threshold

Parameters of the 
unconstrained  data fits

To obtain CONSTRAINED FITS TO DATA (CFD) we minimize:

W roughly counts the number
of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

This can be used to check DR



Consistency up to 1.6 GeV!!

Consistency up to 1.74 GeV!!



S-waves. The most interesting for the K0* resonances 

Largest changes from UFD to CFD

at higher energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)



Kappa pole from CFD

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
JRP, A. Rodas  & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG2017:                             
(682±29)-i(273±12) MeV



The resonance is NO LONGER the κ nor the K0∗(800)

But Still “Needs 
Confirmation” !

Plenty of room 
for improvement
on parameters

Best analysis so far:
Roy-Steiner 

dispersion relations

Our
Pade sequences



Kappa pole analytic determinations from constrained fits

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG2017:                             
(682±29)-i(273±12) MeV

New PDG2018:                             
(630-730)-i(260-340) MeV

And name changed
K0

∗(700)
Still “Needs Confirmation”



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• As πK checks: Small inconsistencies. 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)



Partial Wave πK→πK  and ππ→KK Dispersion Relations (Roy-Steiner eqs.)

To get a resonance pole we need 
PARTIAL-WAVE dispersion relations.

1) Integrate “t” for fixed-t dispersion relations. 
Fine for the real axis (1.1 GeV)
but bad to reach the pole.
Were used to obtain solutions by the Paris Group
We will only used them as constraints on data

Their applicability is limited 
-by the double spectral regions 
-by the Lehmann ellipses 
(way too technical. See our apendices)

Two possibilities in the literature:



πK→πK  and ππ→KK Hyperbolic Dispersion Relations (HDR)

2) Integrate along (s-a)(u-a)=b hyperbolae 
in the  Mandelstam plane
We tuned a to maximize applicability for
ππ→KK

Applicability range slightly smaller in real axis
but covers the kappa pole if a chosen 
appropriately

We will use them as constraints and to get the 
pole.
a=-9𝑚𝑚𝜋𝜋

2 chosen to include also error bars 
inside applicability region



JRP, A. Rodas PRD 2016 

gI
J =ππ → KK partial waves. We study (I,J)=(0,0),(1,1),(0,2)

fI
J = Kπ → Kπ partial waves. Taken from previous dispersive study

Δ(t) depend on higher waves
or on Kπ→Kπ.

Solve in descending J order
We have used models for higher waves, but give very small contributions

𝐺𝐺𝐽𝐽,𝐽𝐽𝐽
𝐼𝐼 (t,t’) =integral kernels, depend on a parameter

Lowest # of subtractions. Odd pw decouple from even pw. 

27

Integrals from
2π threshold !

πK→πK  and ππ→KK Hyperbolic Dispersion Relations (HDR)



ππ→KK Hyperbolic Dispersion Relations (HDR)

For unphysical region below KK threshold, we used Omnés function

This is the form of our HDR: Roy-Steiner+Omnés formalism

We can now check how well these HDR are satisfied

28



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)



UFD already goodOnce agin SIMPLE FITS TO ππ→KK DATA

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)

30

Inconsistent with HDR
If not constrained



But consistent after HDR used as constraints

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)

HDR P-wave

HDR D0-wave

HDR S0-wave

HDR S0-wave

Two possible solutions for S0 wave



I=0,J=0, CFD

1-σ differences between
UFD and CFD phase

Some 2-σ level differences between UFDB and CFDB between 1.05 and 1.45 GeV
CFDC consistent within 1-σ band of UFDC

2-σ differences between
UFDB and CFDB phase

32

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• As πK Checks: Large inconsistencies. 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, in progress. PRELIMINARY results shown here



πK Hiperbolic Dispersion Relations I=3/2, J=0  and I=1/2, J=0
SIZABLE inconsistencies of unconstrained fits with the minimal number 
of subtractions (shown here). Fairly consistent with one more subtraction for F-



πK Hiperbolic Dispersion Relations I=1/2, J=0

LARGE inconsistency of HDR  Roy-Steiner from unconstrained fits 

Fixed-t Roy-Steiner is OK 
but kappa pole outside 
their applicability region

The most relevant wave for the kappa resonance.

We have chosen the hyperbolae family so that the kappa pole 
and its uncertainties lie within their applicability region



WARNING ABOUT THE PRECISION OF UNCONSTRAINED FITS

Before imposing Roy Eqs. incompatible results with different # of subtractions !!
This is part of the left cut.

You can imagine what precision you get if you use simple models only of piK, 
without left cut or without dispersión relations…

Looking fine on data is not 
enough to get an stable 
and precise continuation 
to the complex plane



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV

• As πK Checks: Large inconsistencies. 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, arXiv:2001.08153



πK Hiperbolic Dispersion Relations I=1/2, J=0

Thus, a constrained data analysis stisfying Dispersion Relations is needed.
This is what we have finally completed, satisfying all of them.
(16 in our case, FDRs, fixed-t, HDR, different # subtractions)

Our Constrained 
parameterization now 
yields consistent output 
for all Dispersion 
Relations



πK Hiperbolic Dispersion Relations I=3/2, J=0  and I=1/2, J=0
SIZABLE inconsistencies of unconstrained fits with the minimal number 
of subtractions (shown here). Fairly consistent with one more subtraction for F-

Made consistent within uncertainties when we use the DR as constraints



πK CFD vs. UFD
Constrained parameterizations suffer minor changes but still describe 
πK data fairly well. Here we compare the unconstrained fits (UFD) versus the 
constrained ones (CFD)

The “unphysical” rho peak in ππ→KK grows by 10% from UFD to CFD



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV

• As πK Checks: Large inconsistencies. 

• Rigorous κ/K0
∗(700) pole 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, 
arXiv:2001.08153



Dispersive pole analysis from constrained fit to data JRP, A. Rodas ArXiv:2001.08153

• Constrained FIT TO DATA (not solution but fit)
• Improved P-wave (consistent with data)
• Realistic ππ→KK uncertainties (none before)
• Improved Pomeron

• Constrained ππ→KK input with DR 
• Unphysical region VERY RELEVANT
• FDR up to 1.6 GeV
• Fixed-t Roy-Steiner Eqs.
• Hyperbolic Roy Steiner Eqs.

both in real axis (not before) 
and complex plane

• Both one and no-subtractions for F- HDR
(only the subtracted one before)

Now we have:



Dispersive pole analysis from constrained fit to data JRP, A. Rodas, arXiv:2001.08153

(658±13)-i(278.5±12) MeV
And our previous
“Pade sequence”
determination 
(670±18)-i(295±28) MeV

Compatible with 
Paris group
Decotes-Genon-Moussallam 2006

When using the constrained fit to data both poles come out nicely compatible 

No sub:  (649± 6)-i(284±25) MeV
1 sub: (650±7)-i(279±16) MeV



• The πK and π π →KK data do not satisfy well basic dispersive 
constraints

• Using dispersion relations as constraints we provide simple and 
consistent data parameterizations. 

• We have implemented partial-wave dispersion relations whose 
applicability range reaches the kappa pole. 

• Our results confirm previous studies and provide a precise 
determination of its parameters FROM DATA. A good control on 
the left cut is needed for this precision.

• We believe this resonance should be considered “well-established”, 
completing the nonet of lightest scalars.

Summary
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