Hybrids in a chiral approach

Excited QCD 2020
2-8/2/2020 - Krynica Zroj - Poland
Francesco Giacosa

Based on: arXiv:2001.061
in collaboration with W. Eshraim, C. Fischer, and D. Parganlija

Outline

- Symmetries of QCD
- An hadronic model of QCD: the eLSM. Recall of the mesonic sector
- Glueballs (briefly)
- Hybrids
- Conlcuions and outlook

Symmetries of QCD

Giuseppe Lodovico Lagrangia
Born
25 January 1736
Turin
Died
10 April 1813 (aged 77)
Paris

II
LETTERA
Luige Dx La Gxange Tounnier
TOR I N E S E
ALE ILLUSTRISSIMO SIGNOR CONTE
GIULIO CARLO DAFAGNANO

Qui accanto si può osservare l'Estratto dall'atto di nascita e di battesimo tratto dai registri parrocchiali della Parrocchia di Sant'Eusebio, dove risulta il nome di Lagrangia.

> Nel 1754 pubblicò la Lettera a Giulio Carlo da Fagnano il suo primo lavoro, l'unico scritto in italiano, che gli procurò il primo impiego di sostituito del maestro di matematica presso le Scuole di Artiglieria.

The QCD Lagrangian

Quark: u,d,s and c,b,t R,G,B

$$
q_{i}=\left(\begin{array}{c}
q_{i}^{R} \\
q_{i}^{G} \\
q_{i}^{B}
\end{array}\right) ; i=u, d, s, \ldots
$$

8 type of gluons ($R \bar{G}, B \bar{G}, \ldots$)

$$
\mathcal{L}_{Q C D}=\sum_{i=1}^{N_{f}} \bar{q}_{i}\left(i \gamma^{\mu} D_{\mu}-m_{i}\right) q_{i}-\frac{1}{4} G_{\mu \nu}^{a} G^{a, \mu \nu}
$$

$$
A_{\mu}^{a} ; a=1, \ldots, 8
$$

Confinement: quarks never

 'seen' directly. How they might look like ©
charm

bottom

Picture by Pawel Piotrowski

Trace anomaly: the emergence of a dimension

Chiral limit: $m=0$
$x^{\mu} \rightarrow x^{\prime \mu}=\lambda^{-1} x^{\mu} \quad$ (s a classical symmetry broken by quantum fluctuations
Dimensional transmutation

$$
\Lambda_{\mathrm{YM}} \approx 250 \mathrm{MeV}
$$

$$
\alpha_{\mathrm{S}}(\mu=\mathrm{Q})=\frac{\mathrm{g}^{2}(\mathrm{Q})}{4 \pi}
$$

Effective gluon mass: $m_{\text {gluon }}=0 \rightarrow m_{\text {ghuon }}^{*} \approx 500-800 \mathrm{MeV}$
Gluon condensate: $\left\langle G_{\mu \nu}^{a} G^{a, \mu \nu}\right\rangle \neq 0$

Flavor symmetry

Gluon-quark-antiquark vertex
It is democratic! The gluon couples to each flavor with the same strength

$$
\begin{gathered}
q_{i} \rightarrow U_{i j} q_{j} \\
\mathrm{U} \in \mathrm{U}(3)_{\mathrm{V}} \rightarrow \mathrm{U}^{+} \mathrm{U}=1
\end{gathered}
$$

Chiral symmetry

Right-handed:

$$
U(3)_{R} \times U(3)_{L}=U(1)_{R+L} \times U(1)_{R-L} \times S U(3)_{R} \times S U(3)_{L}
$$

baryon number anomaly $U(1) A$

Axial anomaly: explicitely broken by quantum fluctuations

$$
\partial^{\mu}\left(\bar{q}^{i} \gamma_{\mu} \gamma_{5} q^{i}\right)=\frac{3 g^{2}}{16 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left(G_{\mu \nu} G_{\rho \sigma}\right)
$$

SSB into SU(3)v
In the chiral limit ($\mathrm{mi}=0$) chiral symmetry is exact, but is spontaneously broken by the QCD vacuum

Symmetries of QCD and breakings

SU(3)color: exact. Confinement: you never see color, but only white states.

Dilatation invariance: holds only at a classical level and in the chiral limit.
Broken by quantum fluctuations (trace anomaly) and by quark masses.
$\mathbf{S U}(3) \mathrm{rxSU}(3) \mathrm{L}: \quad$ holds in the chiral limit, but is broken by nonzero quark masses. Moreover, it is spontaneously broken to $U(3) V=R+L$
$\mathrm{U}(1)_{\mathrm{A}=\mathrm{R}-\mathrm{L}:} \quad$ holds at a classical level, but is also broken by quantum fluctuations (axial anomaly)

Hadrons

The QCD Lagrangian contains 'colored' quarks and gluons. However, no ,colored' state has been seen.

Confinement: physical states are white and are called hadrons.

Hadrons can be:
Mesons: bosonic hadrons

Baryons: fermionic hadrons
A meson is not necessarily a quark-antiquark state.
A baryon is not necessarily a three-quark state.
Quark-antiquark and three-quark states are conventional mesons and baryons.

Example of conventional quark-antiquark states: the ρ and the π mesons

$$
m_{\rho^{+}}=775 \mathrm{MeV}
$$

Pion

$$
m_{\pi^{+}}=139 \mathrm{MeV}
$$

Mass generation in QCD is a nonpert. feature based on SSB
(mentioned previusly).

Non-conventional mesons: theoretical expectations

1) Glueballs

2) Hybrids

Compact diquark-antidiquark states
3) Four-quark states Molecular states (a type of dynamical generation)

Companion poles (another type of dynamical generation)

Construction of a chiral model of QCD:
 the extended Linear Sigma Model (eLSM)

QCD not solvable in the domain of light mesons and baryons

- Lattice QCD: impressive improvements. However, some properties such as decays of resonances and fintie denisty still hard. Finite temperature: © ...but finite density tough (sign problem).
- Effective approaches with quarks dof: Bethe-Salpeter equations with, chirall models involving quarks (NJL and its extensions).
- Effective approaches involving hadrons: ChPT (taylormade for pions and nucleons), effective models with linear relaization of chiral symmetry (->eLSM).

Motivation for the extended Linear Sigma Model (eLSM)

- Development of a a (chirally symmetric) linear sigma model for mesons and baryons including (axial-)vector d.o.f. and glueball(s)
- Study of the model for $T=\mu=0$ (spectroscopy in vacuum) (decays, scattering lengths,...)

- Second goal: properties at nonzero T and μ
(Condensates and masses in thermal/matter medium,...)

Fields of the eLSM

- Quark-antiquark mesons: scalar, pseudoscalar, vector and axialvector quarkonia.
- Additional mesons: The scalar and the pseudoscalar glueballs
- Baryons: nucleon doublet and its partner
(in the so-called mirror assignment)

We construct the Lagrangian of the so-called Extended Linear Sigma Model (ELSM) according to
chiral invariance and dilatation symmetry and their explicit breakings.

Fields of the eLSM/2

Field in eLSM	Assignment (predom.) [18]	Flavor content	I	$J^{P C}$
a_{0}	$a_{0}(1450)$	$u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}, d \bar{u}$	1	
$\boldsymbol{K}_{0}^{*[\pm, 0]}$	$K_{0}^{*}(1430)$	$u \bar{s}, d \bar{s}, \bar{d} s, \bar{u} s$	$\frac{1}{2}$	0^{++}
σ_{N}, σ_{S}	$f_{0}(1370), f_{0}(1500)$	$c_{1}(u \bar{u}+d \bar{d})+c_{2}(s \bar{s})$	0	
$\boldsymbol{\pi}$	$\left\{\pi^{0}, \pi^{ \pm}\right\}$	$u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}, d \bar{u}$	1	
$\boldsymbol{K}^{[\pm, 0]}$	$K^{[0, \pm]}, \kappa(1460), \kappa(1630), \kappa(1830)$	$u \bar{s}, d \bar{s}, \bar{d} s, \bar{u} s$	$\frac{1}{2}$	0^{-+}
η_{N}, η_{S}	$\eta(547), \eta^{\prime}(958), \eta(1295), \eta(1405), \eta(1475)$	$c_{1}(u \bar{u}+d \bar{d})+c_{2}(s \bar{s})$	0	
ρ^{μ}	$\rho(770)$	$u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}, d \bar{u}$	1	
$\boldsymbol{K}^{* \mu}, \overline{\boldsymbol{K}}^{* \mu}$	$K^{*}(892)$	$u \bar{s}, d \bar{s}, \bar{d} s, \bar{u} s$	$\frac{1}{2}$	0^{-+}
$\omega_{N}^{\mu}, \omega_{S}^{\mu}($ small mixing angle)	$\omega(782), \phi(1020)$	$c_{1}(u \bar{u}+d \bar{d})+c_{2}(s \bar{s})$	0	
a_{1}^{μ}	$a_{1}(1260)$	$u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}, d \bar{u}$	1	
$\boldsymbol{K}_{1}^{\mu}, \overline{\boldsymbol{K}}_{1}^{\mu}$	$K_{1, A} \equiv K_{1}(1270), K_{1}(1400)$	$u \bar{s}, d \bar{s}, \bar{d} s, \bar{u} s$	$\frac{1}{2}$	0^{-+}
$f_{1 N}^{\mu}, f_{1 S}^{\mu}$ (small mixing angle)	$f_{1}(1285), f_{1}(1420)$	$c_{1}(u \bar{u}+d \bar{d})+c_{2}(s \bar{s})$	0	

and, in addition, the scalar/dilaton glueball G (plus evt other glueballs)

Meson phenomenology - literature

1) $\mathrm{Nf}_{\mathrm{f}}=2$ (with frozen glueball): Parganlia FG DHR PRD82 (2010) 054024
2) $\mathrm{Nf}=2$ (with glueball): Janowski Parganlija FG DHR PRD84 (2011) 054007
3) $\mathrm{Nf}_{\mathrm{f}}=3$ (with frozen glueball): Parganlia Kovacs Wolf FG DHR PRD87 (2013) 014011
4) $\mathrm{Nf}=3$ (with glueball): Janowski FG DHR PRD90 (2014) 114005
5) Pseudoscalar glueball: Eshraim Janowski FG DHR PRD87 (2013) 054036 Eshraim Schramm PRD95 (2017) 014028 Eshraim PRD 100 (2019) no.9, 096007
6) $\mathrm{Nf}=4$: Eshraim FG DHR EPJ.A51 (2015) no.9, Eshraim Fischer 112 EPJ A54 (2018) 139
7) Vector glueball: Sammet Janowski FG PRD95 (2017) no.11, 114004
8) Excited (pseudo)scalar mesons: Parganlija FG Eur.Phys.J. c77 (2017) 450
9) Consistency with ChPT: Divotgey Kovacs FG DHR Eur.Phys.J. A54 (2018) 5
10) $\mathrm{fo}_{\mathrm{o}}(500)$ as a four-quark in the vacuum: Lakaschus Mauldin FG DHR PRC 99 (2019) no.4, 045203

Baryon phenomenology - literature

1) Baryonic eLSM for $\operatorname{Nf}=2$: Gallas Fg DHR PRD82 (2011) 014004 , Gallas FG IJMP.A29 (2014) 1450098
2) Nucleon-nucleon scattering: Teilab Deinet FG DHR Phys.Rev. C94 (2016) 044001
3) $\mathrm{Nf}_{\mathrm{f}}=3$ (with four multiplets): olbrich Zeteny FG DHR Phys.Rev. D93 (2016) 034021
4) $\mathrm{Nf}=3$ and axial-anomaly for baryons: olbrich Zetenyi FG DHR Phys.Rev. D97 (2018) no.1, 014007
5) Nuclear matter: Gallas Pagiara FG Nucl.Phys. A872 (2011) $13-24$
6) Inhomogenous condensation in nuclear matter: Heinz FG DHR Nucl.Phys. A933 (2015) $34-42$
7) Inclusion of delta for $\mathrm{N}_{\mathrm{f}}=2$ and decuplets for $\mathrm{N}_{\mathrm{f}}=3$: planned
8) $\mathrm{N}_{\mathrm{f}}=3$ at nonzero density: planned

(Pseudo)scalar sector

$P=P_{a} \lambda^{a}=\left(\begin{array}{ccc}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{N}}{\sqrt{2}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{N}}{\sqrt{2}} & K^{0} \\ K^{-} & \bar{K}^{0} & \eta_{S}\end{array}\right) \equiv\left(\begin{array}{ccc}\bar{u} \Gamma u & \bar{d} \Gamma u & \bar{s} \Gamma u \\ \bar{u} \Gamma d & \bar{d} \Gamma d & \bar{s} \Gamma d \\ \bar{u} \Gamma s & \bar{d} \Gamma s & \bar{s} \Gamma s\end{array}\right) \quad \begin{gathered}\Gamma=\boldsymbol{i} \boldsymbol{\gamma}^{5} \\ \end{gathered}$
$S=S_{a} \lambda^{a}=\left(\begin{array}{ccc}\frac{a_{0}{ }^{0}}{\sqrt{2}}+\frac{\sigma_{N}}{\sqrt{2}} & a_{0}{ }^{+} & K_{S}{ }^{+} \\ a_{0}{ }^{-} & -\frac{a_{0}{ }^{0}}{\sqrt{2}}+\frac{\sigma_{N}}{\sqrt{2}} & K_{S}{ }^{0} \\ K_{S}{ }^{-} & \bar{K}_{S}{ }^{0} & \sigma_{S}\end{array}\right) \equiv\left(\begin{array}{ccc}\bar{u} \Gamma u & \bar{d} \Gamma u & \bar{s} \Gamma u \\ \bar{u} \Gamma d & \bar{d} \Gamma d & \bar{s} \Gamma d \\ \bar{u} \Gamma s & \bar{d} \Gamma s & \bar{s} \Gamma s\end{array}\right) \quad \begin{aligned} & \\ & \end{aligned}$
$a_{0}^{+}=a_{0}(1450) \equiv u \bar{d}$ and not $a_{0}(980)!!!$
$\sigma_{N} \equiv \sqrt{1 / 2}(u \bar{u}+d \bar{d}) \approx f_{0}(1370)$ and not $f_{0}(500)!!!$

Chiral transformation of (pseudo)scalar mesons

$$
\begin{gathered}
q_{i}=q_{i, R}+q_{i, L} \rightarrow\left(U_{R}\right)_{i j} q_{j, R}+\left(U_{L}\right)_{i j} q_{j, L} \quad U_{R}, U_{L} \subset U(3) \\
\Phi=S+i P \\
\Phi_{i j}=\bar{q}_{j} q_{i}+i \bar{q}_{j} i \gamma^{5} q_{i}=\sqrt{2} \bar{q}_{R, j} q_{L, i}
\end{gathered}
$$

$$
\Phi \rightarrow U_{L} \Phi U_{R}^{+}
$$

Example of an invariant term

$$
\begin{gathered}
\Phi \rightarrow U_{L} \Phi U_{R}^{+} \quad U_{R}, U_{L} \subset S U(3) \\
\lambda_{2} \operatorname{Tr}\left[U_{R} \Phi^{+} U_{L}^{+} U_{L} \Phi U_{R}^{+} U_{R} \Phi^{+} U_{L}^{+} U_{L} \Phi U_{R}^{+}\right]=\Lambda_{2} \operatorname{Tr}\left[\Phi^{+} \Phi \Phi^{+} \Phi\right] \\
U_{L}^{+} U_{L}=1, U_{R}^{+} U_{R}=1
\end{gathered}
$$

(Axial-)Vector sector

Model of QCD - eLSM

$$
\begin{aligned}
\mathcal{L}_{e L S M} & =\mathcal{L}_{d i l}+\operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)\right]-m_{0}^{2}\left(\frac{G}{G_{0}}\right)^{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)-\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}-\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)^{2} \\
& -\frac{1}{4} \operatorname{Tr}\left[\left(L^{\mu \nu}\right)^{2}+\left(R^{\mu \nu}\right)^{2}\right]+\operatorname{Tr}\left[\left(\frac{m_{1}^{2}}{2}\left(\frac{G}{G_{0}}\right)^{2}+\Delta\right)\left(L_{\mu}^{2}+R_{\mu}^{2}\right)\right]+\operatorname{Tr}\left[H\left(\Phi+\Phi^{\dagger}\right)\right] \\
& +c_{1}\left(\operatorname{det} \Phi-\operatorname{det} \Phi^{\dagger}\right)^{2}+i \frac{g_{2}}{2}\left\{\operatorname{Tr}\left(L_{\mu \nu}\left[L^{\mu}, L^{\nu}\right]\right)+\operatorname{Tr}\left(R_{\mu \nu}\left[R^{\mu}, R^{\nu}\right]\right)\right\} \\
& +\frac{h_{1}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(L_{\mu}^{2}+R_{\mu}^{2}\right)+h_{2} \operatorname{Tr}\left[\left|L_{\mu} \Phi\right|^{2}+\left|\Phi R_{\mu}\right|^{2}\right] \\
& +2 h_{3} \operatorname{Tr}\left(L_{\mu} \Phi R^{\mu} \Phi^{\dagger}\right)+\mathcal{L}_{e L S M}^{\tilde{\Phi}} \cdots,
\end{aligned}
$$

$$
\Phi=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{\left(\sigma_{N}+a_{0}^{0}\right)+i\left(\eta_{N}+\pi^{0}\right)}{\sqrt{2}} & a_{0}^{+}+i \pi^{+} & K_{0}^{\star+}+i K^{+} \\
a_{0}^{-}+i \pi^{-} & \frac{\left(\sigma_{N}-a_{0}^{0}\right)+i\left(\eta_{N}-\pi^{0}\right)}{} & K_{0}^{\star 0}+i K^{0} \\
K_{0}^{\star-}+i K^{-} & \bar{K}_{0}^{\star 0}+i \bar{K}^{0} & \sigma_{S}+i \eta_{S}
\end{array}\right)
$$

$$
L^{\mu}, R^{\mu}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{\omega_{N} \pm \rho^{0}}{\sqrt{2}} \pm \frac{f_{1 N} \pm a_{1}^{0}}{\sqrt{2}} & \rho^{+} \pm a_{1}^{+} & K^{\star+} \pm K_{1}^{+} \\
\rho^{-} \pm a_{1}^{-} & \frac{\omega_{N} \not \rho^{\circ}}{\sqrt{2}} \pm \frac{f_{1 N \neq a_{1}^{0}}}{K^{\star 0}} \pm K^{\star 0} \pm K_{1}^{0} \\
K^{\star-} \pm K_{1}^{-} & K_{1}^{0} & \omega_{S} \pm f_{1 S}
\end{array}\right)
$$

SSB and the donkey of Buridan

$$
\sigma_{N} \rightarrow \sigma_{N}+\phi
$$

Jean Buridan (in Latin, Johannes Buridanus) (ca. 1300 - after 1358)

Spontaneous Symmetry Breaking

Although Nicolás likes the symmetric food configuration, he must break the symmetry deciding which carrot is more appealing. In three dimensions, there is a continuous valley where Nicolás can move from one carrot to the next without effort.

Results of the fit

(11 parameters, 21 exp. quantities)

Observable	Fit $[\mathrm{MeV}]$	Experiment $[\mathrm{MeV}]$
f_{π}	96.3 ± 0.7	92.2 ± 4.6
f_{K}	106.9 ± 0.6	110.4 ± 5.5
m_{π}	141.0 ± 5.8	137.3 ± 6.9
m_{K}	485.6 ± 3.0	495.6 ± 24.8
m_{η}	509.4 ± 3.0	547.9 ± 27.4
$m_{\eta^{\prime}}$	962.5 ± 5.6	957.8 ± 47.9
m_{ρ}	783.1 ± 7.0	775.5 ± 38.8
$m_{K^{\star}}$	885.1 ± 6.3	893.8 ± 44.7
m_{ϕ}	975.1 ± 6.4	1019.5 ± 51.0
$m_{a_{1}}$	1186 ± 6	1230 ± 62
$m_{f_{1}(1420)}$	1372.5 ± 5.3	1426.4 ± 71.3
$m_{a_{0}}$	1363 ± 1	1474 ± 74
$m_{K_{0}^{\star}}$	1450 ± 1	1425 ± 71
$\Gamma_{\rho \rightarrow \pi \pi}$	160.9 ± 4.4	149.1 ± 7.4
$\Gamma_{K^{\star} \rightarrow K \pi}$	44.6 ± 1.9	46.2 ± 2.3
$\Gamma_{\phi \rightarrow \bar{K} K}$	3.34 ± 0.14	3.54 ± 0.18
$\Gamma_{a_{1} \rightarrow \rho \pi}$	549 ± 43	425 ± 175
$\Gamma_{a_{1} \rightarrow \pi \gamma}$	0.66 ± 0.01	0.64 ± 0.25
$\Gamma_{f_{1}(1420) \rightarrow K^{\star} K}$	44.6 ± 39.9	43.9 ± 2.2
$\Gamma_{a_{0}}$	266 ± 12	265 ± 13
$\Gamma_{K_{0}^{\star} \rightarrow K \pi}$	285 ± 12	270 ± 80

Results of the fit/2

arXiv:1208.0585

eLSM
Overall phenomenology is good. Further quantities calculated afterwards.

Scalar mesons $\mathrm{a}_{0}(1450)$ and $\mathrm{K}_{0}(1430)$ above 1 GeV and are quark-antiquark states. The chiral partner of the pion (the σ) is $\mathrm{f}_{\mathrm{o}}(1370)$.

Importance of the (axial-)vector mesons
Francesco Giacosa

Glueballs in the eLSM (brief!)

Scalar glueball: mixing pattern

Above 1 GeV one has two quark-antiquark states and a bare glueball.

```
\(\sqrt{\frac{1}{2}}(\overline{\mathbf{u}} \mathbf{u}+\overline{\mathbf{d}} \mathbf{d})\)
    \(\overline{\mathrm{s}} \mathrm{s}\)
Glueball: gg
```

They mix to form the 3 resonances on the right.

```
Note:
\(a_{0}(980) k(800) \mathrm{f}_{0}(980) \quad \mathrm{f}_{0}(500)\)
are regarded as non-quarkonium objects
```

${ }_{1}{ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)$

See also the mini-reviews on scalar mesons under $f_{0}(500)$ (see th Journal of Physics G33 1 (2006)
$f_{0}(1370)$ T-MATRIX POLE POSITION
Note that $\Gamma \approx 2 \operatorname{lm}(\sqrt{\text { spole }})$
VALUE (meV) DOCUMENT ID TECN COMMENT
(1200-1500)-i(150-250) OUR ESTIMATE

$$
\begin{aligned}
& f_{0}(1500) \quad \quad I^{G}\left(\mu^{\rho C}\right)=0^{+}\left(0^{++}\right) \\
& \text {See also the mini-reviews on scalar mesons under } f_{0}(500) \text { (see the } \\
& \text { index for the page number) and on non- } q \bar{q} \text { candidates in PDG } 06 \\
& \text { Journal of Physics G33 } 1 \text { (2006). } \\
& f_{0}(1500) \text { MASS } \\
& \text { Value (MeV) evts document id tecn comment } \\
& 1504 \pm 6 \text { OUR AVERAGE } \quad \frac{\text { DOCUMENT ID }}{\text { Error includes scale factor of } 1.3 \text {. See the ideogram below. }} \\
& f_{0}(1500) \text { WIDTH } \\
& \text { VALUE (MeV) EVTS } \\
& \text { DOCUMENT ID TECN COMMENT } \\
& \text { 109 } \pm 7 \text { OUR AVERAGE } \\
& f_{0}(1710) \\
& I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right) \\
& \text {See our mini-review in the } 2004 \text { edition of this Review, Physics Let- } \\
& f_{0}(500) \text { (see the index for the page number) }
\end{aligned}
$$

$1723+{ }_{5}^{6}$ OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below
$f_{0}(1710)$ WIDTH
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
139 ± 8 OUR AVERAGE Error includes scale factor of 1.1

The scalar glueball in the eLSM

The calculation of the full mixing problem in the $\mathrm{I}=\mathrm{J}=0$ sector shows that:

$$
\left(\begin{array}{c}
\mathbf{f}_{0}(1370) \\
\mathbf{f}_{0}(1500) \\
\mathbf{f}_{0}(\mathbf{1 7 1 0})
\end{array}\right)=\left(\begin{array}{ccc}
0.91 & -0.24 & 0.33 \\
0.30 & 0.94 & -0.17 \\
-0.27 & 0.26 & 0.93
\end{array}\right)\left(\begin{array}{c}
\sqrt{\frac{1}{2}}(\overline{\mathbf{u}} \mathbf{u}+\overline{\mathbf{d}} \mathbf{d}) \\
\overline{\mathbf{s} s} \\
\text { Glueball: gg }
\end{array}\right)
$$

Ergo: $\mathrm{fo}(1710)$ is predominantly a glueball! ...and $\mathrm{fo}(1370)$ is the chiral partner of the pion

In BESIII, CLAS, COMPASS, and in the future in PANDA: production processes with these states.

Details in S. Janowski, F.G, D. H. Rischke,
Phys.Rev. D90 (2014) 11, 114005, arXiv: 1408.4921

Lattice result on J/Psi decay into glueball

From the PDG (decay of the j / ψ): the radiative decays into $f_{0}(1710)$ are larger than into $f_{0}(1500)$.

$$
\begin{array}{llll}
\gamma f_{0}(1710) & \rightarrow \gamma K \bar{K} & \left(\begin{array} { r r }
{ 8 . 5 } & { { } _ { - 0 . 9 } ^ { + 1 . 2 }) \times 1 0 ^ { - 4 } } \\
{ \gamma f _ { 0 } (1 7 1 0) } & { \rightarrow \gamma \pi \pi } \\
{ \gamma f _ { 0 } (1 7 1 0) } & { \rightarrow \gamma \omega \omega } \\
{ \gamma f _ { 0 } (1 7 1 0) } & { \rightarrow \gamma \eta \eta }
\end{array} \left(\begin{array}{lll}
4.0 & \pm 1.0 &) \times 10^{-4} \\
(3.1 & \pm 1.0 &) \times 10^{-4}
\end{array}\right.\right. & \gamma f_{0}(1500) \rightarrow \gamma \pi \pi \\
(2.4 & & \\
-0.7 &) \times 10^{-4} & \gamma f_{0}(1500) \rightarrow \gamma \eta \eta & (1.01 \pm 0.32) \times 10^{-4} \\
\hline
\end{array}
$$

The pseudoscalar glueball

$$
\mathcal{L}_{\tilde{G} \text {-mesons }}^{i n t}=i c_{\tilde{G} \Phi} \tilde{G}\left(\operatorname{det} \Phi-\operatorname{det} \Phi^{\dagger}\right)
$$

Quantity	Value
$\Gamma_{\tilde{G} \rightarrow K K_{S}} / \Gamma_{\tilde{\tilde{G}}}^{t o t}$	0.059
$\Gamma_{\tilde{G} \rightarrow a_{0} \pi} / \Gamma_{\tilde{G}}^{t \tilde{G}}$	0.083
$\Gamma_{\tilde{G} \rightarrow \eta \sigma_{N}} / \Gamma_{\tilde{G}}^{t o t}$	0.028
$\Gamma_{\tilde{G} \rightarrow \eta \sigma_{S}} / \Gamma_{\tilde{\tilde{t}}}$	0.012
$\Gamma_{\tilde{G} \rightarrow \eta^{\prime} \sigma_{N}} / \Gamma_{\tilde{G}}^{t o t}$	0.019

$$
\Gamma_{\widetilde{G} \rightarrow \pi \pi \pi}=0
$$

PANDA will produce a pseudoscalar glueball (if existent).
Details in:
W. Eshraim, S. Janowski, F.G., D. Rischke, Phys.Rev. D87 (2013) 054036. arxiv: 1208.6474.
W. Eschraim, S. Janowski, K. Neuschwander, A. Peters, F.G., Acta Phys. Pol. B, Prc. Suppl. 5/4, arxiv: 1209.3976

Vector glueball

From arXiv:1607.03640 [hep-ph],
Decays of the vector glueball by F.G, J. Sammet, S. Janowski, PRD 95 (2017) 114004

We predict that the vector glueball decays mostly into:

$$
\mathcal{O} \rightarrow b_{1} \pi \rightarrow \omega \pi \pi \quad \mathcal{O} \rightarrow \omega \pi \pi \quad \mathcal{O} \rightarrow \pi K K^{*}(892)
$$

The lattice mass of 3.8 GeV has been used; Tables of ratios are in the preprintpaper

Planned studies:
tensor glueball, pseudovector glueball.

Hybrid mesons in the eLSM

arXiv:2001.061

Candidate/1

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

Candidate/2

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update
$\pi_{1}(1400)$

$$
I^{G}\left(J^{P C}\right)=1^{-}\left(1^{-+}\right)
$$

See also the mini-review under non $q \bar{q}$ candidates in PDG 06, Journal of Physics G33 1 (2006).

Francesco Giacosa

Only one pole

Determination of the pole position of the lightest hybrid meson candidate
JPAC Collaboration (A. Rodas (Madrid U.) et al.).
Phys.Rev.Lett. 122 (2019) no.4, 042002
"We provide a robust extraction of a single exotic $\pi 1$ resonant pole, with mass and width $1564 \pm 24 \pm 86 \mathrm{MeV}$ and $492 \pm 54 \pm 102 \mathrm{MeV}$, which couples to both $\eta(0) \pi$ channels. We find no evidence for a second exotic state."

Hybrids from lattice

Hybrid mesons: lattice predictions for $1^{\wedge}-+$ hybrids at about 1.7 GeV

See for instance the review:
C. Meyer and E. Swanson, Hybrid Mesons,

Prog. Part. Nucl. Phys. 82 (2015) 21 [arXiv: 1502.07276 [hep-ph]].

Note, $1^{\wedge}-+$ is an exotic combination impossible for a quark-antiquark pair

New quark-antiquark nonets in the eLSM are needed

Nonet	L	S	$J^{P C}$	Current	Assignment
P	0	0	0^{-+}	$P_{i j}=\frac{1}{\sqrt{2}} \bar{q}_{j} \gamma^{5} q_{i}$	$\pi, K, \eta, \eta^{\prime}$
S	1	1	0^{++}	$S_{i j}=\frac{1}{\sqrt{2}} \bar{q}_{j} q_{i}$	$a_{0}(1450), K_{0}^{*}(1430), f_{0}(1370), f_{0}(1510)$
V^{μ}	0	1	1^{--}	$V_{i j}^{\mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} \gamma^{\mu} q_{i}$	$\rho(770), K^{*}(892), \omega(785), \phi(1024)$
A^{μ}	1	1	1^{++}	$A_{i j}^{\mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} \gamma^{5} \gamma^{\mu} q_{i}$	$a_{1}(1230), K_{1, A}, f_{1}(1285), f_{1}(1420)$
B^{μ}	1	0	1^{+-}	$B_{i j}^{\mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} \gamma^{5} \overleftrightarrow{\partial}^{\mu} q_{i}$	$b_{1}(1230), K_{1, B}, h_{1}(1170), h_{1}(1380)$
$E_{\text {ang }}^{\mu}$	2	1	1^{--}	$E_{\text {ang }, i j}^{\mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} \overleftrightarrow{\partial}^{\mu} q_{i}$	$\rho(1700), K^{*}(1680), \omega(1650), \phi(? ? ?)$

For excited vectors see Piotrowska et al PRD 96 (2017) no.5, 054033

Chiral multiplet	Current	$U_{R}(3) \times U_{L}(3)$	P	C
$\Phi=S+i P$	$\sqrt{2} \bar{q}_{R, j} q_{L, i}$	$U_{L} \Phi U_{R}^{\dagger}$	Φ^{\dagger}	Φ^{t}
$R^{\mu}=V^{\mu}-A^{\mu}$	$\sqrt{2} \bar{q}_{R, j} \gamma^{\mu} q_{R, i}$	$U_{R} R^{\mu} U_{R}^{\dagger}$	L_{μ}	$L^{t \mu}$
$L^{\mu}=V^{\mu}+A^{\mu}$	$\sqrt{2} \bar{q}_{L, j} \gamma^{\mu} q_{L, i}$	$U_{L} R^{\mu} U_{L}^{\dagger}$	R_{μ}	$R^{t \mu}$
$\tilde{\Phi}^{\mu}=E_{\text {ang }}^{\mu}-i B^{\mu}$	$\sqrt{2} \bar{q}_{R, j} i \overleftrightarrow{\partial^{\mu}} q_{L, i}$	$U_{L} \tilde{\Phi}^{\mu} U_{R}^{\dagger}$	$\tilde{\Phi}^{\dagger \mu}$	$-\tilde{\Phi}^{t \mu}$

ArXiv: 1607.03640

New quark-antiquark nonets/2

$$
\tilde{\Phi}^{\mu}=V_{E}^{\mu}-i B^{\mu}
$$

$$
\tilde{\Phi}^{\mu} \rightarrow U_{L} \tilde{\Phi}^{\mu} U_{R}^{\dagger}
$$

Hybrid nonets in the eLSM

$$
\Pi_{i j}^{h y b, \mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} G^{\mu \nu} \gamma_{\nu} q_{i}
$$

Exotic quantum numbers: ${ }^{1}$--

$$
B_{i j}^{h y b, \mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} G^{\mu \nu} \gamma^{5} \gamma_{\nu} q_{i} \quad B^{h y b, \mu}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{h_{1 N, B}^{h y b}+b_{1}^{h y b, 0}}{\sqrt{2}} & b_{1}^{h y b,+} & K_{1, B}^{h y b+} \\
b_{1}^{h y b,+} & \frac{h_{1 N, B}^{h y b}-b_{1}^{h y b, 0}}{\sqrt{2}} & K_{1, B}^{h y b 0} \\
K_{1, B}^{h y b-} & \bar{K}_{1, B}^{h y b 0} & h_{1 S, B}^{h y b}
\end{array}\right)^{\mu}
$$

Quantum numbers $1^{\wedge+}$

Hybrid nonets/2

Nonet	$J^{P C}$	Current	Assignment	P	C
$\Pi^{h y b, \mu}$	1^{-+}	$\Pi_{i j}^{h y b, \mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} G^{\mu \nu} \gamma_{\nu} q_{i}$	$\pi_{1}(1600), K_{1}(?), \eta_{1}(?), \eta_{1}(?)$	$\Pi_{\mu}^{h y b}(t,-\mathrm{x})$	$\Pi^{h y b, \mu, t}$
$B^{h y b, \mu}$	1^{+-}	$B_{i j}^{h y b, \mu}=\frac{1}{\sqrt{2}} \bar{q}_{j} G^{\mu \nu} \gamma_{\nu} \gamma^{5} q_{i}$	$b_{1}(2000 ?), K_{1, B}(?), h_{1}(?), h_{1}(?)$	$-B_{\mu}^{h y b}(t,-\mathrm{x})$	$-B^{h y b, \mu, t}$

Chiral multiplet	Current	$U_{R}(3) \times U_{L}(3)$	P	C
$R^{h y b, \mu}=\Pi^{h y b, \mu}-B^{h y b, \mu}$	$\sqrt{2} \bar{q}_{R, j} G^{\mu \nu} \gamma_{\nu} q_{R, i}$	$U_{R} R^{h y b, \mu} U_{R}^{\dagger}$	$L_{\mu}^{h y b}$	$\left(L^{h y b, \mu}\right)^{t}$
$L^{h y b, \mu}=\Pi^{h y b, \mu}+B^{h y b, \mu}$	$\sqrt{2} \bar{q}_{L, j} G^{\mu \nu} \gamma_{\nu} q_{L, i}$	$U_{L} R^{h y b, \mu} U_{L}^{\dagger}$	$R_{\mu}^{h y b}$	$\left(R^{h y b, \mu}\right)^{t}$

Inclusion of hybrids into the Lagrangian of the eLSM

$$
\mathcal{L}_{e L S M}^{\text {enlarged }}=\mathcal{L}_{e L S M}+\mathcal{L}_{e L S M}^{\text {hybrid }}
$$

$$
\mathcal{L}_{e L S M}^{\text {hybrid }}=\mathcal{L}_{e L S M}^{\text {hybrid-quadratic }}+\mathcal{L}_{e L S M}^{\text {hybrid-linear }}
$$

$$
\mathcal{L}_{e L S M}^{\text {hybrid-quadratic }}=\mathcal{L}_{e L S M}^{\text {hybrid-kin }}+\mathcal{L}_{e L S M}^{\text {hybrid-mass }}
$$

Masses of hybrids

$\mathcal{L}_{e L S M}^{\text {hybrid-mass }}=m_{1}^{h y b, 2} \frac{G^{2}}{G_{0}^{2}} \operatorname{Tr}\left(L_{\mu}^{h y b, 2}+R_{\mu}^{h y b, 2}\right)+\operatorname{Tr}\left(\Delta^{h y b}\left(L_{\mu}^{h y b, 2}+R_{\mu}^{h y b, 2}\right)\right)$

$$
+\frac{h_{1}^{h y b}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(L_{\mu}^{h y b, 2}+R_{\mu}^{h y b, 2}\right)+h_{2}^{h y b} \operatorname{Tr}\left[\left|L_{\mu}^{h y b} \Phi\right|^{2}+\left|\Phi R_{\mu}^{h y b}\right|^{2}\right]+2 h_{3}^{n y b} \operatorname{Tr}\left(L_{\mu}^{h y b} \Phi R^{h y b, \mu} \Phi^{\dagger}\right)
$$

$$
\begin{aligned}
& m_{\pi_{1}^{h y b}}^{2}=m_{1}^{h y b, 2}+\frac{1}{2}\left(h_{1}^{h y b}+h_{2}^{h y b}+h_{3}^{h y b}\right) \phi_{N}^{2}+\frac{h_{1}^{h y b}}{2} \phi_{S}^{2}+2 \delta_{N}^{h y b} \\
& m_{K_{1}^{h y b}}^{2 h}=m_{1}^{h y b, 2}+\frac{1}{4}\left(2 h_{1}^{h y b}+h_{2}^{h y b}\right) \phi_{N}^{2}+\frac{1}{\sqrt{2}} \phi_{N} \phi_{S} h_{3}^{h y b}+\frac{1}{2}\left(h_{1}^{h y b}+h_{2}^{h y b}\right) \phi_{S}^{2}+\delta_{N}^{h y b}+\delta_{S}^{h y b} \\
& m_{\eta_{1, N}^{h y b}}^{2 h}=m_{\pi_{1}}^{2} \\
& m_{\eta_{1, S}^{h y b}}^{2}=m_{1}^{h y b, 2}+\frac{h_{1}^{h y b}}{2} \phi_{N}^{2}+\left(\frac{h_{1}^{h y b}}{2}+h_{2}^{h y b}+h_{3}^{h y b}\right) \phi_{S}^{2}+2 \delta_{S}^{h y b}
\end{aligned}
$$

$$
\begin{aligned}
m_{b_{1}^{h y b}}^{2} & =m_{1}^{h y b, 2}+\frac{1}{2}\left(h_{1}^{h y b}+h_{2}^{h y b}-h_{3}^{h y b}\right) \phi_{N}^{2}+\frac{h_{1}^{h y b}}{2} \phi_{S}^{2}+2 \delta_{N}^{h y b} \\
m_{K_{1, B}^{h y b}}^{2} & =m_{1}^{h y b, 2}+\frac{1}{4}\left(2 h_{1}^{h y b}+h_{2}^{h y b}\right) \phi_{N}^{2}-\frac{1}{\sqrt{2}} \phi_{N} \phi_{S} h_{3}^{h y b}+\frac{1}{2}\left(h_{1}^{h y b}+h_{2}^{h y b}\right) \phi_{S}^{2}+\delta_{N}^{h y b}+\delta_{S}^{h y b} \\
m_{h_{1 N}^{h y b}}^{2 h b} & =m_{b_{1}^{h y b}}^{2}, \\
m_{h_{1 S}^{h y b}}^{2} & =m_{1}^{h y b 2}+\frac{h_{1}^{h y b}}{2} \phi_{N}^{2}+\left(\frac{h_{1}^{h y b}}{2}+h_{2}^{h y b}-h_{3}^{h y b}\right) \phi_{S}^{2}+2 \delta_{S}^{h y b} .
\end{aligned}
$$

Mass differences and approximated expressions

$$
\begin{aligned}
m_{b_{1}^{h y b}}^{2}-m_{\pi_{1}^{h y b}}^{2} & =-2 h_{3}^{h y b} \phi_{N}^{2}, \\
m_{K_{1, S}^{2 h y b}}^{2}-m_{K_{1}^{h y b}}^{2} & =-\sqrt{2} \phi_{N} \phi_{S} h_{3}^{h y b} \\
m_{h_{1 S}^{h}}^{2 h b} & -m_{\eta_{1, S}^{2 h b}}^{2}
\end{aligned}=-h_{3}^{h y b} \phi_{S}^{2} . \quad .
$$

Mass splitting caused by the chiral condensate

$$
\begin{aligned}
m_{K_{1}^{h y b}}^{2} & \simeq m_{\pi_{1}^{h y b}}^{2}+\delta_{S}^{h y b} \\
m_{\eta_{1, N}^{h y b}}^{2} & \simeq m_{\pi_{1}^{h y b}}^{2} \\
m_{\eta_{1, S}^{h y b}}^{2} & \simeq m_{\pi_{1}^{h y b}}^{2}+2 \delta_{S}^{h y b} \\
m_{b_{1}^{h y b}}^{2} & \simeq m_{\pi_{1}^{h y b}}^{2}-2 h_{3}^{h y b} \phi_{N}^{2} \\
m_{K_{1, B}^{h y b}}^{2} & \simeq m_{K_{1}^{h y b}}^{2}-\sqrt{2} \phi_{N} \phi_{S} h_{3}^{h y b} \\
m_{h_{1 S}^{h y b}}^{2} & \simeq m_{\eta_{1, S}^{h y b}}^{2}-h_{3}^{h y b} \phi_{S}^{2}
\end{aligned}
$$

Masses: results

Resonance	Mass $[\mathrm{MeV}]$
$\pi_{1}^{\text {hyb }}$	1660 [input using $\pi_{1}(1600)$ [7]]
$\eta_{1, N}^{\text {hyb }}$	1660
$\eta_{1, S}^{\text {hyb }}$	1751
$K_{1}^{\text {hyb }}$	1707
$b_{1}^{\text {hyb }}$	2000 [input set as an estimate]
$h_{1 N, B}^{h y b}$	2000
$K_{1, B}^{\text {hyb }}$	2063
$h_{1 S, B}^{\text {hyb }}$	2126

If the $\boldsymbol{\pi 1}(1600)$ is indeed an hybrid mesons, we should find all the others...

Lagrangian for decays of hybrids

$$
\begin{aligned}
\mathcal{L}_{\text {eLSM }}^{\text {hybrid-linear }}= & i \lambda_{1}^{h y b} G \operatorname{Tr}\left[L_{\mu}^{h y b}\left(\tilde{\Phi}^{\mu} \Phi^{\dagger}-\Phi \tilde{\Phi}^{\dagger \mu}\right)+R_{\mu}^{h y b}\left(\tilde{\Phi}^{\mu \dagger} \Phi-\Phi^{\dagger} \tilde{\Phi}^{\mu}\right)\right] \\
& +i \lambda_{2}^{h y b} \operatorname{Tr}\left(\left[L_{\mu}^{h y b}, L^{\mu}\right] \Phi \Phi^{\dagger}+\left[R_{\mu}^{h y b}, R^{\mu}\right] \Phi^{\dagger} \Phi\right) \\
& +\alpha^{h y b} \operatorname{Tr}\left(\tilde{L}_{\mu \nu}^{h y b} \Phi R^{\mu \nu} \Phi^{\dagger}-\tilde{R}_{\mu \nu}^{h y b} \Phi^{\dagger} L^{\mu \nu} \Phi\right) \\
& +\beta_{A}^{h y b}\left(\operatorname{det} \Phi-\operatorname{det} \Phi^{\dagger}\right) \operatorname{Tr}\left(L_{\mu}^{h y b}\left(\partial^{\mu} \Phi \cdot \Phi^{\dagger}-\Phi \cdot \partial^{\mu} \Phi^{\dagger}\right)-R_{\mu}^{h y b}\left(\partial^{\mu} \Phi^{\dagger} \cdot \Phi-\Phi^{\dagger} \cdot \partial^{\mu} \Phi\right)\right)
\end{aligned}
$$

Chiral symmetry fulfilled in all terms.
First and second term: dilatation invariance
Third term: breaks dilatation invariance but involves Levi-Civita
Fourth term: axial anomaly

First decay term

$$
\begin{aligned}
\mathcal{L}_{e L S M, 1}^{\text {hybrid-linear }}= & i 2 \lambda_{1}^{h y b} G\left\{\operatorname{Tr}\left[\Pi_{\mu}^{h y b}\left[P, B^{\mu}\right]\right]+\operatorname{Tr}\left[\Pi_{\mu}^{h y b}\left[V_{E}^{\mu}, S\right]\right]\right\} \\
& +2 \lambda_{1}^{h y b} G\left\{\operatorname{Tr}\left[B_{\mu}^{h y b}\left\{P, V_{E}^{\mu}\right\}\right]+\operatorname{Tr}\left[B_{\mu}^{h y b}\left\{B^{\mu}, S\right\}\right]\right\}
\end{aligned}
$$

$\Pi^{h y b} \rightarrow B P$

$$
\pi_{1} \rightarrow b_{1}(1230) \pi
$$

Ratio	Value
$\Gamma_{K_{1}^{h y b} \rightarrow K h_{1}(1170)} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi b_{1}}$	0.050
$\Gamma_{b_{1}^{h y b} \rightarrow \pi \omega(1650)} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi b_{1}}$	0.065
$\Gamma_{K_{1 B}^{h y b} \rightarrow \pi K^{*}(1680)} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi b_{1}}$	0.19
$\Gamma_{h_{1, N}^{h y b} \rightarrow \pi \rho(1700)} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi b_{1}}$	0.16

Second decay term

$\mathcal{L}_{e L S S M, 2}^{\text {hybridinear }}=2 i \lambda_{2}^{\text {habb }} \operatorname{Tr}\left[\left(\left[\Pi_{\mu}^{h y b}, V^{\mu}\right]+\left[B_{\mu}^{h y b}, A^{\mu}\right]\right)\left(S^{2}+P^{2}\right)\right]-2 \lambda_{2}^{h y b} \operatorname{Tr}\left[\left(\left[\Pi_{\mu}^{h y b}, A^{\mu}\right]+\left[B_{\mu}^{h y b}, V^{\mu}\right]\right)[P, S]\right]$

$$
\Pi^{h y b} \rightarrow V P P \quad \Pi^{h y b} \rightarrow A^{\mu} P S \quad B_{\mu}^{h y b} \rightarrow A^{\mu} P P \quad B_{\mu}^{h y b} \rightarrow P P P
$$

The decays $\pi_{1} \rightarrow \eta \pi$ and $\pi_{1} \rightarrow \eta^{\prime} \pi$, however, do not follow from this term.

Ratio	Value
$\Gamma_{\pi_{1}^{0 h y b} \rightarrow K^{0} \bar{K}^{0} / \Gamma_{b_{1}^{0 h y b}} \rightarrow \pi^{+} \pi^{-} \eta}$	0.0080
$\Gamma_{\eta_{1 N}^{h y b} \rightarrow K^{0} \bar{K}^{0}} / \Gamma_{b_{1}^{0 h y b}} \rightarrow \pi^{+} \pi^{-} \eta$	0.0080
$\Gamma_{\eta_{1 S}^{h y b} \rightarrow K^{0} \bar{K}^{0}} / \Gamma_{b_{1}^{0 h y b} \rightarrow \pi^{+} \pi^{-} \eta}$	0.017
$\Gamma_{K_{1}^{0 h y b} \rightarrow K^{-} \pi^{+}} / \Gamma_{b_{1}^{0 h y b}} \rightarrow \pi^{+} \pi^{-} \eta$	0.0041
$\Gamma_{K_{1}^{0 h y b} \rightarrow \bar{K}^{0} \eta^{2}} / \Gamma_{b_{1}^{0 h y b} \rightarrow \pi^{+} \pi^{-} \eta}$	0.0022
$\Gamma_{K_{1}^{0 h y b} \rightarrow \bar{K}^{0} \eta^{\prime}} / \Gamma_{b_{1}^{0 h y b}} \rightarrow \pi^{+} \pi^{-} \eta$	0.0026
$\Gamma_{b_{1}^{0 h y b} \rightarrow \pi^{+} a_{0}^{-}} / \Gamma_{b_{1}^{0 h y b} \rightarrow \pi^{+} \pi^{-} \eta}$	0.24

$$
b_{1}^{h y b} \rightarrow \pi \pi \eta
$$

Ratio	Value
$\Gamma_{\pi_{1}^{0 h y b} \rightarrow K^{* 0} \bar{K}^{0} \pi^{0}} / \Gamma_{b_{1}^{0 h y b} \rightarrow \pi^{+} \pi^{-} \eta}$	0.0046
$\Gamma_{\pi_{1}^{+h y b} \rightarrow \pi^{0} \rho^{+} \eta^{\prime}} / \Gamma_{b_{1}^{0 h y b} \rightarrow \pi^{+} \pi^{-} \eta}$	0.1832
$\Gamma_{\eta_{1 N}^{h y b} \rightarrow K^{* 0} \bar{K}^{0} \pi^{0}} / \Gamma_{b_{1}^{0 h y b} \rightarrow \pi^{+} \pi^{-} \eta}$	0.0046

(much more decays and details in the paper)

Third decay term

$$
\mathcal{L}_{e L S M, 3}^{\text {hybrid-linear }}=i \alpha^{h y b} \phi_{N}\left\{\operatorname{Tr}\left(\tilde{\Pi}_{\mu \nu}^{h y b}\left[P, V^{\mu \nu}\right]\right)-\operatorname{Tr}\left(\tilde{B}_{\mu \nu}^{h y b}\left(\left[P, A^{\mu \nu}\right]\right)\right\}+\ldots\right.
$$

$$
\pi_{1}^{h y b} \rightarrow \rho \pi \text { and } \pi_{1}^{h y b} \rightarrow K^{*} K
$$

Ratio	Value
$\Gamma_{\pi_{1}^{0 h y b} \rightarrow \bar{K}^{0} K^{* 0}} / \Gamma_{\pi_{1}^{-h y b} \rightarrow \rho^{0} \pi^{-}}$	0.61
$\Gamma_{\eta_{1 N}^{h y b} \rightarrow \bar{K}^{0} K^{* 0}} / \Gamma_{\pi_{1}^{-h y b} \rightarrow \rho^{0} \pi^{-}}$	0.61
$\Gamma_{\eta_{1 S}^{h y b} \rightarrow \bar{K}^{0} K^{* 0}} / \Gamma_{\pi_{1}^{-h y b} \rightarrow \rho^{0} \pi^{-}}$	1.6
$\Gamma_{K_{1}^{0 h y b} \rightarrow K^{0} \omega_{S}} / \Gamma_{\pi_{1}^{-h y b} \rightarrow \rho^{0} \pi^{-}}$	0.00022
$\Gamma_{K_{1}^{0 h y b} \rightarrow \bar{K}^{* 0} \eta^{\prime}} / \Gamma_{\pi_{1}^{-h y b} \rightarrow \rho^{0} \pi^{-}}$	0.0011
$\Gamma_{K_{1}^{0 h y b} \rightarrow K^{* 0} \pi^{0}} / \Gamma_{\pi_{1}^{-h y b} \rightarrow \rho^{0} \pi^{-}}$	0.00022
$\Gamma_{K_{1}^{0 h y b} \rightarrow \bar{K}^{0} \rho^{0}} / \Gamma_{\pi_{1}^{-h y b} \rightarrow \rho^{0} \pi^{-}}$	0.0011

Francesco Giacosa

Fourth decay term

$$
\mathcal{L}_{e L S M, 4}^{\text {hybrid-linear }}=-\beta_{A}^{h y b} Z_{\pi} \sqrt{\frac{3}{2}} \phi_{N}^{3} \eta_{0} \operatorname{Tr}\left(\Pi_{\mu}^{h y b} \partial^{\mu} P\right)+\ldots
$$

$$
\pi_{1}^{h y b} \rightarrow \eta \pi \text { and } \pi_{1}^{h y b} \rightarrow \eta^{\prime} \pi
$$

Note: η ' π is dominant!

Ratio	Value
$\Gamma_{\pi_{1}^{h y b} \rightarrow \pi \eta^{\prime}} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi \eta}$	12.7
$\Gamma_{K_{1}^{h y b} \rightarrow K \eta} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi \eta}$	0.69
$\Gamma_{K_{1}^{h y b} \rightarrow K \eta^{\prime}} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi \eta}$	5.3
$\Gamma_{\eta_{1, N}^{h y b} \rightarrow \eta \eta} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi \eta}$	0.62
$\Gamma_{\eta_{1, N}^{h y b} \rightarrow \eta \eta^{\prime}} / \Gamma_{\pi_{1}^{h y b}} \rightarrow \pi \eta$	2.2
$\Gamma_{\eta_{1, S}^{h y b} \rightarrow \eta \eta} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi \eta}$	0.58
$\Gamma_{\eta_{1, S}^{h y b} \rightarrow \eta \eta^{\prime}} / \Gamma_{\pi_{1}^{h y b} \rightarrow \pi \eta}$	1.57

Francesco Giacosa

Conclusions

- eLSM: an effective model of QCD for mesons (and baryons). In the mesonic sector (pseudo)scalar and (axial-)vector mesons included.
- Glueballs: the scalar glueball from the very beginning (trace anomaly), pseudoscalar (axial anomaly) and vector have been coupled to the eLSM
- Hybrids: inclusion of the nonets of $1^{\wedge}-+$ hybrids and their chiral partners. Moreover, inclusions of (pseudo)vector and orbitally excited vector mesons.
- Mass relations obtained. Decay ratio obtained.

$$
\pi_{1}(1600) \rightarrow \pi b_{1}, \pi_{1}(1600) \rightarrow \rho \pi \eta, \pi_{1}(1600) \rightarrow \rho \pi, \pi_{1}(1600) \rightarrow \eta^{\prime} \pi, \pi_{1}(1600) \rightarrow \eta \pi
$$

Thank You!

Dilaton-Scalar glueball/1

We start from the scalar glueball.
The lightest glueball is included as part of the chiral Lagrangian in order to reproduce at a composite level the breaking of dilatation invariance.

Development of a dilaton field and a dilaton potential.

Exotic: $2^{\wedge+-}$ and $0^{\wedge+-}$ They are heavy!

Dilaton - Scalar glueball/2

At the hadronic level, we describe these properties as:

$$
\begin{aligned}
G^{4} & \sim G_{\mu \nu}^{a} G^{a, \mu \nu} \\
\mathcal{L}_{\text {dil }} & =\frac{1}{2}\left(\partial_{\mu} G\right)^{2}-V_{\text {dil }}(G) \\
V_{d i l}(G) & =\frac{1}{4} \frac{m_{G}^{2}}{\Lambda_{G}^{2}}\left[G^{4} \ln \left(\frac{G}{\Lambda_{G}}\right)-\frac{G^{4}}{4}\right]
\end{aligned}
$$

$\Lambda \mathrm{g}$ dimensionful param that breaks dilatation inv!

$$
\langle G\rangle=G_{0}=\Lambda_{G} \propto \Lambda_{Y M}
$$

$$
\partial_{\mu} J^{\mu}=T_{\mu}^{\mu}=-\frac{1}{4} \frac{m_{G}^{2}}{\Lambda_{G}^{2}} G^{4}
$$

In Yang-Mills (QCD wo quarks) it is:

$$
\partial_{\mu} J^{\mu}=T_{\mu}^{\mu}=\frac{\beta(g)}{4 g} G_{\mu \nu}^{a} G^{a, \mu \nu} \neq 0
$$

J. Schechter et al,

Phys. Rev. D 24, 2545 (1981)
M. Migdal and Shifman, Phys. Lett. 114B, 445 (1982)

Side remark: The light scalar mesons belba 1 GeV : what are they? They are -at first- not teet part of the eLSM

$$
\begin{aligned}
& \mathrm{ao}(980) \quad \mathrm{fo}(980) \quad \mathrm{K}^{*}(700) \quad \mathrm{fo}(500) \\
& \mathrm{J}^{\mathrm{PC}}=0^{++}
\end{aligned}
$$

Various studies show that these states are not quark-antiquark states.
They can be meson-meson molecules and/or diquark-antidiquark states.
For instance, $\mathrm{a} 0(980)$ and $\mathrm{K} 0^{*}(700)$ may emerge as companion poles.

In both cases we have four-quark objects.

$\mathrm{fo}_{\mathrm{f}}(500)$ is the lighest scalar states: important in nuclear interaction and in studies of chiral symmetry restorations.

Ellis-Lanik 'warning' (1984)

IS SCALAR GLUONIUM OBSERVABLE?
John ELLIS
CERN, Geneva, Switzerland
and
Jozef LANIK
JINR, Dubna, USSR

Received 26 October 1984
Physics Letters 150 B, 1984
Dilaton Lagrangian which mimics the trace anomaly: very large glueball is found. Decay into pion reads:

For a glueball of about 1.5 GeV in mass,
$\Gamma=0.6\left(\mathrm{M}_{\mathrm{G}} / 1 \mathrm{GeV}\right)^{5} \mathrm{GeV}$ one gets a width of about 4.5 GeV !

Disagreement with the large-Nc expectation

There are many consequences of the fit. Example: a0(1450)

Theory

$$
\begin{aligned}
& \frac{\Gamma_{a_{0} \rightarrow \eta^{\prime} \pi}}{\Gamma_{a_{0} \rightarrow \eta \pi}}=0.19 \pm 0.02, \quad \frac{\Gamma_{a_{0} \rightarrow K K}}{\Gamma_{a_{0} \rightarrow \eta \pi}}=1.12 \pm 0.07 \\
& \operatorname{Exp}(\text { PDG) } \\
& \frac{\Gamma_{a_{0}(1450) \rightarrow \eta^{\prime} \pi}}{\Gamma_{a_{0}(1450) \rightarrow \eta \pi}}=0.35 \pm 0.16, \frac{\Gamma_{a_{0}(1450) \rightarrow K K}}{\Gamma_{a_{0}(1450) \rightarrow \eta \pi}}=0.88 \pm 0.23
\end{aligned}
$$

Wave function of the scalar dibaryon (dimeron)

Recall:

\mid Deuteron $\rangle=\mid$ space:ground-state $\rangle|\uparrow \uparrow\rangle|n p-p n\rangle \quad J^{P}=1^{+} \quad I=0$
We now switch spin and isospin and get the isotriplet:

$$
\mid \text { Dimeron-np }\rangle=\mid \text { space:ground-state }\rangle|\uparrow \downarrow-\downarrow \uparrow\rangle|n p+p n\rangle
$$

\mid Dimeron-nn $\rangle=\mid$ space:ground-state $\rangle|\uparrow \downarrow-\downarrow \uparrow\rangle|n n\rangle$

$$
I=1
$$

\mid Dimeron-pp $\rangle=\mid$ space:ground-state $\rangle|\uparrow \downarrow-\downarrow \uparrow\rangle|p p\rangle$

$$
J^{P}=0^{+}
$$

Existence and pole position of fo(500)

Complicated PDG history. Existence through the position of the pole. Now: established.

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update

Existence and pole position of f0(500)

From 2010 to 2012: update

See the review of J.R. Pelaez (Madrid U.), e-Print: arXiv:1510.00653
A review on the status of the non-ordinary $f_{0}(500)$ resonance

Vector glueball into BP, PPV, VP

$\mathcal{L}_{1}=\lambda_{\mathcal{O}, 1} G \mathcal{O}_{\mu} \operatorname{Tr}\left[\Phi^{\dagger} \tilde{\Phi}^{\mu}+\tilde{\Phi}^{\mu \dagger} \Phi\right]$
$\mathcal{L}_{2}=\lambda_{\mathcal{O}, 2} \mathcal{O}_{\mu} \operatorname{Tr}\left[L^{\mu} \Phi \Phi^{\dagger}+R^{\mu} \Phi^{\dagger} \Phi\right]$
$\mathcal{L}_{3}=\alpha \varepsilon_{\mu \nu \rho \sigma} \partial^{\rho} \mathcal{O}^{\sigma} \operatorname{Tr}\left[L^{\mu} \Phi R^{\nu} \Phi^{\dagger}\right]$

Quantity	Value
$\frac{\mathcal{O} \rightarrow \eta h_{1}(1170)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.17
$\frac{\mathcal{O} \rightarrow \eta h_{1}(1380)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.11
$\frac{\mathcal{O} \rightarrow \eta^{\prime} h_{1}(1170)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.15
$\frac{\mathcal{O} \rightarrow \eta^{\prime} h_{1}(1380)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.10
$\frac{\mathcal{O} \rightarrow K K_{1}(1270)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.75
$\frac{\mathcal{O} \rightarrow K K_{1}(1400)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.30
$\frac{\mathcal{O} \rightarrow K_{0}^{*}(1430) K^{*}(1680)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.20
$\frac{\mathcal{O} \rightarrow a_{0}(1450) \rho(1700)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.14
$\frac{\mathcal{O} \rightarrow f_{0}(1370) \omega(1650)}{\mathcal{O} \rightarrow b_{1} \pi}$	0.034

$\mathcal{O} \rightarrow b_{1} \pi \rightarrow \omega \pi \pi$
ArXiv: 1607.03640

Quantity	Value
$\frac{O \rightarrow K K \rho}{O \rightarrow \omega \pi \pi}$	0.50
$\frac{O \rightarrow K K \kappa}{O \rightarrow \omega \pi \pi}$	0.17
$\frac{O \rightarrow K K \phi \phi}{O \rightarrow \omega \pi \pi}$	0.21
$\frac{O \rightarrow \pi K K^{*}(892)}{O \rightarrow \omega \pi \pi}$	1.2
$\frac{O \rightarrow \eta \eta \omega}{O \rightarrow \omega \pi \pi}$	0.064
$\frac{O \rightarrow \eta \eta^{\prime} \omega}{O \rightarrow \omega \pi \pi}$	0.019
$\frac{O \rightarrow \eta^{\prime} \eta^{\prime} \omega}{O \rightarrow \omega \pi \pi}$	0.019
$\frac{O \rightarrow \eta \eta \phi}{O \rightarrow \omega \pi \pi}$	0.039
$\frac{O \rightarrow \eta \eta^{\prime} \phi}{O \rightarrow \omega \pi \pi}$	0.011
$\frac{O \rightarrow \eta^{\prime} \eta^{\prime} \phi}{O \rightarrow \omega \pi \pi}$	0.011
$\frac{O \rightarrow a_{0}(1450)_{0}(1450) \omega}{O \rightarrow \omega \pi \pi}$	0.00029

Quantity	Value
$\frac{O \rightarrow a_{0}(1450) \rho}{O \rightarrow \omega \pi \pi}$	0.47
$\frac{O \rightarrow f_{0}(1370) \omega}{O \rightarrow \omega \pi \pi}$	0.15
$\frac{O \rightarrow K_{0}^{*}(1430) K^{*}(892)}{O \rightarrow \omega \pi \pi}$	0.30
$\frac{O \rightarrow K K}{O \rightarrow \omega \pi \pi}$	0.018

$$
\mathcal{O} \rightarrow \omega \pi \pi \quad \mathcal{O} \rightarrow K^{*}(892)
$$

Quantity	Value
$\frac{\mathcal{O} \rightarrow K K^{*}(892)}{\mathcal{O} \rightarrow \rho \pi}$	1.3
$\frac{\mathcal{O} \rightarrow \eta \omega}{\mathcal{O} \rightarrow \rho \pi}$	0.16
$\frac{\mathcal{O} \rightarrow \eta^{\prime} \omega}{\mathcal{O} \rightarrow \rho \pi}$	0.13
$\frac{\mathcal{O} \rightarrow \eta \phi}{\mathcal{O} \rightarrow \rho \pi}$	0.21
$\frac{\mathcal{O} \rightarrow \eta^{\prime} \phi}{\mathcal{O} \rightarrow \rho \pi}$	0.18
$\frac{\mathcal{O} \rightarrow \rho a_{1}(1230)}{\mathcal{O} \rightarrow \rho \pi}$	1.8
$\frac{\mathcal{O} \rightarrow \omega f_{1}(1285)}{\mathcal{O} \rightarrow \rho \pi}$	0.55
$\frac{\mathcal{O} \rightarrow \omega f_{1}(1420)}{\mathcal{O} \rightarrow \rho \pi}$	0.82

$\rho \pi, K K^{*}(892)$, and $\rho a_{1}(1230)$

