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How to describe this spectrum from first principles?

The standard way is as follows:

Construct from quark and gluon fields an operator O(x) having quantum numbers of a
hadron state |n). There is an infinite number of possibilities, one takes the operator with
minimal canonical dimension (usually twist-2 operators). Then one calculates the
two-point correlation function at large separation in Euclidean space,

(O(x)O(y)) ~ e7mnley

|z — y| — oo

This program is followed in lattice simulations and QCD sum rules.

But what about the higher radial excitations? They are exponentially suppressed in this
approach.

An old assumption:
They should couple to QCD operators of higher canonical dimensions.

Difficult to realize in practice!



Some examples

Consider two basic quark currents,

Ve = @78 = Quypgn + QRYuqR. (

[
e

S = qq = qLgr + qRYL. (2)

Here the Dirac spinor ¢ = g, + gr stays for u or d quark fields and g, r =
1¢—;5q. The 1sospin and 75 matrices can be also mserted m (1) and (2) but
this 1s not essential for our discussions and will be dropped (but 1mplicitly
assumed where necessary). What 1s essential 1s the different chiral structure
of twist-2 vector current (1) and twist-3 scalar current (2) thevy trans-

form differently under SUL(2) x SUgr(2) chiral transtformations.

The twist-2 vector current (1) has been traditionally used for mterpola-
tion of p and w mesons 1 QCD sum rules, lattice QCD and low-energy effec-
tive field theories.



Consider now the lightest ps excitation — the resonance

p3(1690) [14]. The leading twist spin-3 quark operator can be easily con-
structed by insertion of covariant derivatives (the appropriate symmetriza-
tion 1s mimplied),

Viaipsus = Ve Dy Dy 4. (3)
The tensor current (3) 1s not conserved (as the scalar one (2) and many
others) but the experience of spectral QCD sum rules shows that the conser-
vation 1s of no importance for finding the relevant pole [15]. The interpolating
operator (3) repeats the chiral properties of (1). We can contract the last
two Lorentz indices 1n (3) and get the twist-4 vector current

7 — 2. /

I,Li — qp:",uD . (4)
It 1s natural to expect that the current (4) couples to a spin-1 state lying in
a mass range close to p3(1690). Such a state does exists the resonance
p(1700)

So the general principle: the higher is the canonical dimension of interpolating QCD
operator the higher is the mass of corresponding hadron state.



On the other hand. a vector interpolating current can be constructed also
by insertion of covariant derivative to the scalar current (2).

Ve=qD,q = q.D,qr + qrDuqv. (D)

This operator inherits the chiral properties of the current (2) and its twist.
In addition, the currents (1) and (5) look different from the point of view of
Lorentz group since (5) can be represented on shell as [13]

{?D,uq X _apru" H;.w == "-?g;.w(j"- (6)

where 0, = (7,7 — 7*1*’3"'#) /2i. The antisymmetric tensor current H uy trans-
forms as (1,0) 4+ (0,1) while (1) has the Lorentz structure (% %) [11-13].
One can notice that the vector current 0 H,, is trivially conserved but this
conservation 1s topological, 1.e. of different nature than the conservation of
Noether current (1). What p-meson does the operator (5) interpolate?” Since
it has one covariant derivative, one can expect the corresponding state to
lie between p(770) and p(1700). There exists one well-established p-meson
in this range the resonance p(1450) [14]. One may expect also that the
experimental study of this resonance 1s more difficult because 1ts production
should be suppressed in eTe -annihilation. The Particle Data [14] indeed
makes caution that p(1450) is the name for a broad resonance region rather
than a deflinite resonance.



The higher spin Regge recurrences arise thus from two kinds of composite
spin-.J operators stemming from (1) and (2).

Ir’:;.-,“_.-,g;.r,g...phr = {jﬁmiDﬂiDHE e D#Jq* (7)
—; QDHIDP&DP’G ***D;'.LJQ* (8)

The operators (7) interpolate the spin-.J quark-antiquark states in the Lorentz
representation (% %) and have the chiral transformation properties of usual
vector current (1) (and for this reason emerge naturally m QCD analysis of
deep melastic scattering via OPE). while the chiral and Lorentz properties
of (8) are different. Contracting n times the Lorentz imndices we get an mter-

polating operator for the n-th radial excitation of corresponding spin-(.J—2n)
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For high enough canonical dimensions, several covariant derivatives in (7)
and (8) can be replaced by msertion of gluon field strength &, the corre-
sponding operators will interpolate hyvbrid states. For mstance, the operator
gy G, DVq couples to a scalar hybrid with the chiral properties of vector
current (1). One can of course construct purely gluonic operators which are
chiral singlets. The leading twist-2 operators of this sort have the structure

G =G D Bla.... B, i (9)
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How to relate the hadron mass and the canonical dimension of corresponding
QCD operator within a working model?

The problem simplifies and becomes much better defined in the large-Nc limit
of QCD (no multiquark states).

Such a connection appears naturally in the holographic QCD!



[Witten; Gubser, Polyakov, Klebanov (1998)]
The essence of the holographic method

d g j Y f
(Efd ‘TJ(E]U(E)}GFT = fo;fJ e51%: 9]
/ H(z.0AdS)=J ()
\

generating functional action of dual gravitational theory AdS boundary

evaluated on classical solutions

| 1 ) 1 )
o = (O @) On3)) = 05 5o0ary /5 500 (an)

S[o,g]

The output of the holographic models: Correlation functions

Poles of the 2-point correlator - mass spectrum
Residues of the 2-point correlator - decay constants

Residues of the 3-point correlator = transition amplitudes

Alternative way for finding the mass spectrum is to solve e.o.m. C:?'J(I”_ : _’:) = E?‘?"Ip(rﬁ( Z )



Hard wall model

(Erlich et al., PRL (2005); Da Rold and Pomarol, NPB (2005))
The AdS/CFT dictionary dictates: local symmetries in 5D = global symmetries in 4D
The chiral symmetry: SUL(2) x SUp(2)

A typical model describing the chiral symmetry breaking and meson spectrum:

5 = /J‘"';:: /g T;-{|DJ{|" LB ﬁf_Ff +F§-J} 0<z< 2,
: 205
U;tl = E*',u.)": - ?:}1_,[.#.-’5.. +iA *’ilﬁ,u- fllL.R = *’I'll.;...i!?r”'.- E“, = E};tﬁ’iz.; - E?w’%,u _.i[}l,uw":ly]-
The pions are introduced via X = Xgexp(i27“t?) 2 — 42 /9
V=(ArL +ARr)/2 A= (Ar — AR)/2 mgR? = (A —J)(A+J—4)

At z = z,, oneimposes certain gauge invariant boundary conditions on the fields.

AD): O(x) bD: @[z, z) J A (ms)*
Lyt L ALy 1 3 :
qrY" 1" g Af | 3 (
TR4L (2/2) X 0 3 —~




Equation of motion for the scalar field

RS B SO
—3X = 58,#X — 9, —0.X

A H S

Solution independent of usual 4 space-time coordinates

_ 1 1 q
Xalz) = ;ﬂf: + EZ:-:'*
H/‘ N \quark condensate
current quark mass
As the holographic O(x))
dictionary prescribes ®(xz, 2);0 = 24_&“1)!}{33) + zﬁ‘—é‘ﬁ\( il here A =
. . 1 2
Denoting  X(z) = E"L-‘{_:}J_. viz)=mz—0z

the equation of motion for the vector fields are (in the axial gauge V:=0)

i 1 i il qi F il .
'[-’}:: Tdiﬁlar_.{ EQ‘ :‘:j + T-['fltf.[ql'l ::I G U
F S J_

where Vig,z)= J‘d“i;r e TV (@, 2) due to the chiral symmetry breaking
2 /

(1, 2y
[ﬂz (733‘4;) + L g0 - g 3 4} — 0
i o J_



The GOR relation holds f';'?ifg =2MX

The spectrum of normalizable modes is given by (with Dirichlet boundary condition)

Jalmuz) = 0

thus the asymptotic behavior is /]77/ n ™ TL (Rediscovery of 1979 Migdal’s result)
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A. Karch, E. Katz, D. T. Son, M. A. Stephanov, PRD 74, 015005 (2006)

Soft-wall model: g — _%fd'i:{_- dzw ge —az szx F‘lf"v

F‘_1|Jr _'""-" — fj_]lf -ll;‘_-ﬂ": —1;_9_,?'.,..' -ll;t'“r b ‘1-{ — 0‘.‘ ]“.' 2‘.‘ '3- "1

The IR boundary condition: the action is finiteat =z = o<

Plane wave ansatz: 1;‘5(1 g)= _":"“Eip;r al :) }}2 = -n}g Axial gauge V, =20

2
After the change of variables v, — \/Eeaz /2% the e.o.m. is reduced to:

3
42

Vol — 2 T 2.2
U 4+ U(2)n = mathy U=a%2%1

One has the radial Schroedinger equation for the harmonic oscillator with orbital momentum L=1

o L*—1/4]
—" + [:2 + / J W = E E = |a|m

"2

S

The spectrum: -;rni — 4]@'(-}1 + 1) =0 0.2 ..




The extension to massless higher-spin fields leads to (for a > 0)

m,, ; = 4a(n + J)

T

Generalization to the arbitrary intercept: m~ = 4|a|(n + 1 + b)

In the vector case: e™%" L T(1 4 b)U(b, 0;az?)e~ (Afonin, PLB (2013))

Tricomi function

The scalar sector

8= / d'r d» v"ﬁe_”’fz(ﬁw@@"”i) — m*®?)

m?R? = A(A — 4)

! a _
m? = 2|al (2?1+&—1+ —) : B= Lsnen
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The essential property of holographic description: The spectrum obtained is the spectrum
of Kaluza-Klein excitations!

Kaluza-Klein reduction (the simplest case)

ggnsider a free massless scalar in D+ 1 dimensions, satisfying
Llo(xzt,y) = 0. Fourier expanding on the circle 0 < y < 2nL, i.e.
oz, y) =3, dn(z)e™¥/ L implies the D-dimensional fields ¢, have

masses m? = n?/L?:
n? L/ |
Ugn — 2 on = 0. Y
One massless field ¢g plus an Infinite tower of massive fields| )
>

These Kaluza-Klein states are identified with the infinite tower of “radial excitations”
expected in the large-Nc limit of QCD,

O(N,) ' = O/N)

M, = O(1) F2 = (0]J|n)>



The poblem which is usually ignored: The narrow mesons in QCD and Kaluza-Klein
states are drastically different in their physical properties!

The modeling of radially excited mesons by KKK modes looks, however, too
simplistic — the former are highly complicated dynamical objects mm QCD
while the latter are rather simple states arising from extra dimension. The
dramatic difference between the KK-like and QCD-like states 1s discussed 1n
detail in Ref. [9]. The main point consists in observation that the former are
deeply bound states sensitive to short distance mteractions and at collisions
producing events with mostly spherical shapes while the latter are extended
states sensitive to large distance interactions and producing characteristic
jets. The underlying reason is that the latter are defined at small 't Hooft
coupling A while the former at large A where the existence of holographic
duality can be motivated. The theories at small and large A turn out to
be qualitatively different.

't Hooft constant A = ¢2N.

9] C. Csaki, M. Reece and J. Terning, JHEP 0905, 067 (2009).



Way out?
Our proposal: Let us assume that higher KK states cannot be excited for some reasons.

This is strongly supported by a recent finding of ref.
S. Fichet, Phys. Rev. D 100, 095002 (2019)

that in Anti-de Sitter space, gravity dresses free propagators of particles on the
quantum level leading to exponential suppresion in the infrared region,

Nale) oce 9,

where p = |/p#p, and positive constant a ~ 1/(R) Ip1)? arises from one-loop
eravitational corrections. The one-loop corrections due to mteractions with
other fields i the bulk (including self-interaction) also lead to the suppression

This expelling resembles Meissner effect for magnetic field in superconductor!



But what about excited states in holographic models?

Let us do a one-to-one mapping of each of them to some QCD operator.

The subsequent strategy: choose a model, calculate the discrete spectrum as a
function of dimension of operator for some set of quantum numbers, remove the
dependence on discrete number and substitute instead the dependence on operator

dimension.

Example: the Soft-Wall model for vector mesons

&) : ; — .zg 1 MN 217 T iV
8 = t“?/rﬁr dz\/ge™" <_EFMNFﬁﬂ + - mélaﬂﬂf ”)

2| —

where g = |detgyn|. Fun = OV — OnVy, M\N = 0,1.2.3,4, cis a
normalization constant for the vector field V. and the backeground space
represents the Poincaré patch of the AdSy space with the metric
T 2 0y
‘(;fjl_.h'\,r(.f‘l"‘udIA = _—2(?}’,{:,,(1.1"{%{.1"” —= ('-lrﬂ‘-:z). z > (],

Fart

The holographic prescription for 5D mass will be ~ m2R? = (A — 1)(A — 3)



The spectrum is mi =2la|(2n+ A - 1) = 1,2. ...

There is an infinite number of spin-1 QCD operators with identical chiral and Lorentz
properties. Their canonical dimensions grow as

A =34 2k, B=01,2.....
Substituting this to the spectrum we obtain
mi =4lal|(n+k+1), o =T 1. Xiviis

111 ”

Now we delete “n” (i.e. we set n=0) — the higher KK modes are not excited!

We see that our prescription does not change the spectrum in this particular model!



The Soft-Wall model for arbitrary spins
1 :
i = (—1)"’5 / d*x d:-:\/f;f_“zg (VN(I?JVh o’ — m%fbﬁﬁj)

d; = @t My, M; =0,1,2,3,4, *+rP, =0 ¢, =0

Using again the 4D plane-wave ansatz ®;(x,, z) = Pz p(J )(:)E 7

we get the equation of motion for the profile function ¢/)( 2)

—95( —az® 2J— -39 4 {J}) n I”%BEE—azE_:.QJ U(J} _ mQE—az? 278, {J.
The discrete spectrum

m2 ;=4la|(n+k+J), nk=012,..., J>0.

Here we again should set n=0 — the form of spectrum is not changed.



We can get a further msight from consideration of normalized eigenfunc-
tions corresponding to the discrete spectrum (35),

C}{J} _ 2'”! €_|a|32 (Iﬂ

1+k ._
(J + 2k + n)! 2) T Lt (lal=®) (36)

where L% (x) are associated Laguerre polynomials. It is seen that the numbers
n and £ are not completely interchangeable 1n the radial wave function: While
the large z asymptotics depends on the sum n 4+ k& (because LY (z) ~ ™ at
large ), the number of zeros is controlled by n only (as the polynomial LS (x)
has n zeros). By setting n = 0, 1.e. by keeping the zero KKK mode only, we
thus choose the wave function without zeros i holographic coordinate. This
wave function 1s the least "entangled” with the 5th holographic dimension
and thereby is the least sensitive to deviations from the AdS structure.



The Hard-Wall model (briefly)

In the standard approach, the spectrum of vector states is determined from the Dirichlet
boundary condition d,6(m.z..) =0 ——> Jo(mpz,) =0

Normalizing the first zero of Bessel function to the rho-meson mass we get the IR-cutoff
i .. an¢ ;
2+~ 323 MeV

The radial spectrum is then given by further zeros, |11,, ~ {776, 177,2810, 38110 }

In our approach, the spectrum for arbitrary spins is determined by the condition

'-}&—3(?”?1;ﬂ1.) =0 A =3l 0y 0

The radial spectrum numerically (in MeV) o _

m, ~ {776,1234, 1653, 2056, 2452, .. . } pre s 1
The phenomenology becomes much better: We get 5 rho- = =
mesons below 2.5 GeV (as the experimental data seemto - DR
suggest) instead of 2 in the usual HW model. e L e )
It is curious to note that this spectrum interpolates with a o - =';_ *
relatively good precision the averaged positions of meson O B T A B
clusters in the light non-strange sector. [ S S M b S




CONCLUSIONS

1 A new holographic description of excited hadrons is proposed

1 The method is free of some conceptual drawbacks related with the
Kaluza-Klein states

O It agrees better with the experimental spectroscopic data

d It is more related with real QCD than previous holographic models






* On anomalous dimensions

The real QCD operators have anomalous dimensions and this represents
a notorious problem for the whole bottom-up holographic approach. One
makes reference to asymptotic freedom at best, any serious discussion of this
problem 1s usually avoided. We will not give a real physical justification but
make an observation. Within our considerations, the account for the anoma-
lous dimension of operators is tantamount to replacement k& — k + =(k..J)
in the spectrum (35). Then 2=s(k,.J) (see Eq. (13)) reflects contribution to
the canonical dimension A from the anomalous part. The systematic form
of (k. J) i1s unknown but it is naturally expected that (k. .J) 1s a growing
function of both arguments. However, the spectrum (35) more or less meets
the existing phenomenology [13, 16, 22]. This should mean that (k,.J) is
either suppressed in the large-N. limit (perhaps the size of =(k,.J) can be
then systematically estimated by a phenomenological analysis of deviations
from the relation (35)) or by itself is an approximate linear function of its
arguments (hence, the effects of anomalous dimensions are then effectively
absorbed by the phenomenological values of parameters in (35)). The both
possibilities could constitute an interesting prediction of the SW holographic
approach.






