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Experimental spectrum of light
non-strange mesons

(a plot from S.S. Afonin, Eur. Phys. J. A 29 (2006) 327)

The major feature:  
Spin-parity clustering

Many need confirmation

The spectrum of light non-strange mesons in units of 
. Experimental errors are indicated. Circles stay 

when errors are negligible. The dashed lines mark the
mean mass squared in each cluster of states.
The arrows indicate the J > 0 mesons which have no 
chiral partners.
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How to describe this spectrum from first principles?

The standard way is as follows:

Construct from quark and gluon fields an operator O(x) having quantum numbers of a
hadron state  . There is an infinite number of possibilities, one takes the operator with
minimal canonical dimension (usually twist-2 operators). Then one calculates the 
two-point correlation function at large separation in Euclidean space,  

This program is followed in lattice simulations and QCD sum rules.

But what about the higher radial excitations? They are exponentially suppressed in this
approach.

An old assumption: 
They should couple to QCD operators of higher canonical dimensions.

Difficult to realize in practice!



Some examples



So the general principle: the higher is the canonical dimension of interpolating QCD
operator the higher is the mass of corresponding hadron state. 







How to relate the hadron mass and the canonical dimension of corresponding 
QCD operator within a working model? 

The problem simplifies and becomes much better defined in the large-Nc limit 
of QCD (no multiquark states). 

Such a connection appears naturally in the holographic QCD!



[Witten; Gubser, Polyakov, Klebanov (1998)]

The essence of the holographic method

generating functional action of dual gravitational theory 
evaluated on classical solutions

AdS boundary

Poles of the 2-point correlator  →  mass spectrum

Alternative way for finding the mass spectrum is to solve e.o.m.

The output of the holographic models: Correlation functions

Residues of the 2-point correlator  →  decay constants

Residues of the 3-point correlator  →  transi�on amplitudes



(Erlich et al., PRL (2005); Da Rold and Pomarol, NPB (2005))

Hard wall model

The AdS/CFT dictionary dictates: local symmetries in 5D  global symmetries in 4D

The chiral symmetry:

A typical model describing the chiral symmetry breaking and meson spectrum:

At                     one imposes certain gauge invariant boundary conditions on the fields.

The pions are introduced via



Equation of motion for the scalar field

Solution independent of usual 4 space-time coordinates

current quark mass

quark condensate

here
As the holographic
dictionary prescribes

Denoting

the equation of motion for the vector fields are (in the axial gauge Vz=0)

where due to the chiral symmetry breaking



The spectrum of normalizable modes is given by (with Dirichlet boundary condition)

that is not Regge like

(Rediscovery of 1979 Migdal’s result)thus the asymptotic behavior is

The GOR relation holds



Soft-wall model:

A. Karch, E. Katz, D. T. Son, M. A. Stephanov, PRD 74, 015005 (2006)

The IR boundary condition: the action is finite at

Plane wave ansatz: Axial gauge

After the change of variables                                           the e.o.m. is reduced to:

The spectrum:

One has the radial Schroedinger equation for the harmonic oscillator with orbital momentum L=1



The extension to massless higher-spin fields leads to (for a > 0)

Generalization to the arbitrary intercept: 

(Afonin, PLB (2013))

Tricomi function

In the vector case: 

Tricomi function

The scalar sector



The essential property of holographic description: The spectrum obtained is the spectrum
of Kaluza-Klein excitations!

Kaluza-Klein reduction (the simplest case)

These Kaluza-Klein states are identified with the infinite tower of “radial excitations”
expected in the large-Nc limit of QCD,



The poblem which is usually ignored: The narrow mesons in QCD and Kaluza-Klein 
states are drastically different in their physical properties!



Way out?

Our proposal: Let us assume that higher KK states cannot be excited for some reasons.

This is strongly supported by a recent finding of ref.

that in Anti-de Sitter space, gravity dresses free propagators of particles on the 
quantum level leading to exponential suppresion in the infrared region, 

This expelling resembles Meissner effect for magnetic field in superconductor! 



But what about excited states in holographic models?

Let us do a one-to-one mapping of each of them to some QCD operator.
The subsequent strategy: choose a model, calculate the discrete spectrum as a 
function of dimension of operator for some set of quantum numbers, remove the 
dependence on discrete number and substitute instead the dependence on operator 
dimension.

Example: the Soft-Wall model for vector mesons

The holographic prescription for 5D mass will be



The spectrum is

There is an infinite number of spin-1 QCD operators with identical chiral and Lorentz
properties. Their canonical dimensions grow as

Substituting this to the spectrum we obtain

Now we delete “n” (i.e. we set n=0) – the higher KK modes are not excited! 

We see that our prescription does not change the spectrum in this particular model!



The Soft-Wall model for arbitrary spins

The discrete spectrum

Here we again should set n=0 – the form of spectrum is not changed.





The Hard-Wall model (briefly)

In the standard approach, the spectrum of vector states is determined from the Dirichlet

Normalizing the first zero of Bessel function to the rho-meson mass we get the IR-cutoff

The radial spectrum is then given by further zeros,

In our approach, the spectrum for arbitrary spins is determined by the condition 

boundary condition

The radial spectrum numerically (in MeV)

The phenomenology becomes much better: We get 5 rho-
mesons below 2.5 GeV (as the experimental data seem to 
suggest)  instead of 2 in the usual HW model.

It is curious to note that this spectrum interpolates with a 
relatively good precision the averaged positions of meson 
clusters in the light non-strange sector.



CONCLUSIONS

 A new holographic description of excited hadrons is proposed

 The method is free of some conceptual drawbacks related with the 
Kaluza-Klein states

 It agrees better with the experimental spectroscopic data

 It is more related with real QCD than previous holographic models





* On anomalous dimensions




