eQCD 2020

2-7 February 2020, Krynica Zdrój

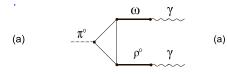
Gauge-covariant diagonalization of $\pi - a_1$ mixing and the resolution of a low energy theorem. *

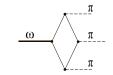
A. A. Osipov^a, M. M. Khalifa^b, B. Hiller[†]

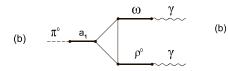
[†] U. Coimbra, Portugal ^a JINR, Dubna Russia. ^b MIPT, Moscow, Russia

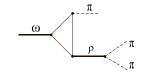
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

* based on Osipov, Khalifa, Hiller, e-print 2001.00901 [hep-ph], PRD 2020, in print



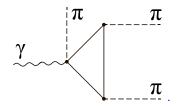






・ロト ・四ト ・ヨト ・ヨト

₹.



Overview

- Short history and motivation
- FOCUS: surface terms (ST) (arbitrary regularization dependent parameteres) in

•
$$\pi_0 \rightarrow \gamma \gamma$$
, $a_1 \rightarrow \rho \gamma$, $a_1 \rightarrow \omega \gamma$

• $\gamma \rightarrow 3\pi$ violation of the low energy theorem (LET) for conventional πa_1 diagonalization.

- restoration of LET with gauge covariant diagonalization.
- Complete VMD fails in the anomalous sector.

Short history and motivation

• Low energy theorem (LET) of current algebra Adler, Lee, Treiman, Zee (PRD '71), Terentiev (JETP '71), Aviv, Zee (PRD '72)

$$\mathcal{F}^{\pi}=e\!f_{\pi}^{2}\mathcal{F}^{3\pi}$$
 (1)

• $F_{\pi^0 \to \gamma\gamma} = F^{\pi}$ and $F_{\gamma \to \pi^+ \pi^0 \pi^-} = F^{3\pi}$ both taken at vanishing momenta of mesons.

• Wess-Zumino (WZ) (PLB '71): effective action describes all effects of QCD anomalies in low-energy processes with photons and Goldstone bosons.

• The WZ action gives correct predictions for a set of low-energy processes, e.g., $\pi^0 \rightarrow \gamma\gamma$, $\gamma \rightarrow 3\pi$ without any reference to the massive vector mesons.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Inclusion of spin-1 states must not change the predictions of the WZ action.

Questions:

• Is the phenomenological successful concept of vector meson dominance (VMD) still applicable?

• Inclusion of axial vector mesons induce $\pi - a_1$ mixing. How to deal with it?

– Fujiwara et al. (Prog. Theor. Phys. '85): complete VMD is not valid in either $\pi^0 \rightarrow \gamma\gamma$ or $\gamma \rightarrow 3\pi$ process.

-Gasiorovicz, Geffen (Rev. Mod. Phys. '69), Volkov, Osipov (JINR '85): The mixing affects hadronic amplitudes.

–Wakamatsu (Ann Phys. '89): reports on a recurrent problem in well known models, such as massive Yang-Mills, the hidden symmetry model, or the NJL model due to $\pi - a_1$ mixing:

violation of LETs involving anomalous processes such as $\gamma \rightarrow 3\pi$, $K^+K^- \rightarrow 3\pi$.

• The extension to the case with spin-1 mesons is not unique:

.

1-Kaymakcalan, Rajeev, Schechter (PRD '84): In the massive Yang-Mills approach the chiral $U(3) \times U(3)$ group is gauged.

 \rightarrow Must take Bardeen's form of the anomaly, Bardeen (PR '69). Problem: the global chiral $U(3) \times U(3)$ symmetry is broken, even if the external gauge fields are absent.

2- Fujiwara et al. (Prog. Theor. Phys. '85) avoid this problem: vector mesons are identified as dynamical gauge bosons of the hidden local $U(3)_V$ symmetry.

The WZ action gets an anomaly-free term with vector mesons (homogeneous solution of the inhomogeneous linear differential equation known as the Wess-Zumino consistency condition)

3-This approach has been generalized (14 new terms) to include the axial vector mesons by Kaiser, Meissner (NPA '90) and is free from the πa_1 -mixing effects by construction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We want to focus on the precise handling of πa_1 mixing in hadron models, involving quark degrees of freedom

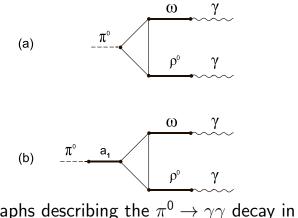
and the mechanism that suppresses its effects.

• Osipov, Khalifa, Hiller (PRD '20): We calculate the Low-energy amplitudes $\pi^0 \rightarrow \gamma\gamma$ and $\gamma \rightarrow 3\pi$ in the framework the Nambu-Jona-Lasinio (NJL) model with spin-1 states.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The πa_1 -mixing in the $\pi^0 \rightarrow \gamma \gamma$ decay

This process can be solely described by the VMD-type graph (a)



Graphs describing the $\pi^0 \rightarrow \gamma \gamma$ decay in the NJL model.

Contribution (a) given by Lagrangian density WZ (PLB '71), Witten (NPB '83)

.

$$\mathcal{L}_{\pi\gamma\gamma} = -\frac{1}{8} F^{\pi} \pi^{0} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta}, \quad F^{\pi} = \frac{N_{c} e^{2}}{12\pi^{2} f_{\pi}}, \quad (2)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 $F_{\mu
u} = \partial_\mu A_
u - \partial_
u A_\mu$, $f_\pi = 93 \,\mathrm{MeV}$.

• Recall: in the NJL model one can switch to spin-1 variables without direct photon-quark coupling, as described in the VMD picture.

• $\mathcal{L}_{\pi\gamma\gamma}$ follows from the direct calculation of the $\pi^0 \omega \rho$ quark triangle at leading order of a derivative expansion.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• This yields the current-algebra result $\Gamma(\pi^0 \to \gamma \gamma) = 7.1 \, {\rm eV}$

Experiment: 7.9 eV.

Contribution due to $\pi - a_1$ mixing

In the NJL model one also has diagram (b), an anomalous AVV quark-loop amplitude

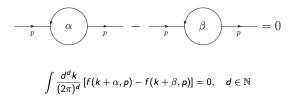
$$\Gamma^{\sigma\mu\nu}(q,p) = -i \frac{N_c g_\rho^3}{16\pi^2} e^{\sigma\mu\nu\alpha} (\chi + p - q)_\alpha + \dots, (3)$$

 $g_
ho\simeq\sqrt{12\pi}$ is the coupling of the $ho o\pi\pi$ decay

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

q, p: outgoing 4-momenta of ω and ρ χ : arbitrary momentum σ, μ, ν : Lorentz indices of a_1, ω, ρ .

• Definition of Momentum Rounting Invariance



▲目▶ 目 のへで

• Considering f(k, p) to be linearly divergent

$$f(k,p) = f_{lin}(k,p) + f_{log}(k,p) + f_{fin}(k,p)$$

• Only the first term violates MRI

$$(\alpha_{\sigma} - \beta_{\sigma}) \int \frac{d^d k}{(2\pi)^d} \frac{\partial}{\partial k_{\sigma}} f_{lin}(k, p) = 0$$

 $\Gamma^{\sigma\mu\nu}(q,p)$ is finite, resulting from a difference of two linearly divergent amplitudes.

Due to linear divergence, a shift of the integration momentum

$$k_{lpha}
ightarrow k_{lpha} + \chi_{lpha}$$

in the quark loop yields essential ambiguity, embodied in arbitrary value of χ .

Parametrize

$$\chi_lpha=(extsf{c}_1-1) p_lpha+(extsf{c}_2+1) q_lpha;$$
 $extsf{c}_1, extsf{c}_2$ dimensionless.

Use Ward identities (WI) to fix c_1, c_2 .

For $\pi^0 \to \gamma \gamma$ decay, VMD transitions $\omega \to \gamma$ and $\rho^0 \to \gamma$ require transversality of $\Gamma^{\sigma\mu\nu}$ $q_{\mu}\Gamma^{\sigma\mu\nu}(q,p) = 0, \quad p_{\nu}\Gamma^{\sigma\mu\nu}(q,p) = 0,$ (4)

$$\sigma^{\mu\nu}(q,p) = 0, \quad p_{\nu}\Gamma^{\sigma\mu\nu}(q,p) = 0, \quad (4)$$
 \downarrow
 $\chi_{\alpha} = q_{\alpha} - p_{\alpha} \qquad c_1 = c_2 = 0$

The AVV triangle (b) does not contribute at LO of the derivative expansion to the amplitude $\pi^0 \rightarrow \gamma \gamma_{a} \rightarrow \gamma \gamma_{a}$

Relate diagram (b) to Landau-Yang theorem:

a massive unit spin particle cannot decay into two on shell massless photons, Landau (Dokl. Akad. Nauk '48), Yang (PR '56)

 $a_1 \rightarrow \gamma \gamma$ decay is forbidden. \downarrow The axial-vector channel $\pi^0 \rightarrow a_1 \rightarrow \gamma \gamma$ induced by the πa_1 -mixing is also forbidden.

Generalization to NLO in powers of q and p of $\Gamma^{\sigma\mu\nu}(q,p)$

Effective Lagrangian for the hadronic $a_1 \omega \rho$ vertex

$$\mathcal{L}_{a_{1}\omega\rho} = \frac{N_{c}g_{\rho}^{3}}{32\pi^{2}}e^{\sigma\mu\nu\alpha} \left\{ a_{1\sigma}^{i} \left(c_{1}\omega_{\mu}\rho_{\alpha\nu}^{i} + c_{2}\rho_{\nu}^{i}\omega_{\alpha\mu} \right) - \frac{1}{2m^{2}} \left[\rho_{\alpha\beta}^{i} \left(\omega_{\sigma\nu}a_{1\beta\mu}^{i} + \omega_{\beta\mu}a_{1\sigma\nu}^{i} \right) + 2\rho_{\sigma\nu}^{i}a_{1\mu}^{i}\partial_{\beta}\omega_{\beta\alpha} \right] \right\}.$$

 $b_{\mu
u} = \partial_{\mu}b_{
u} - \partial_{
u}b_{\mu}$, $b = \omega,
ho^{i}, a_{1}^{i}$; isospin index *i*. For

• c_1, c_2 are not intrinsic to the triangle graph, but depend on the context in which they arise:

• When both vector ω and ρ mesons couple to photons the gauge symmetry is conserved if and only if $c_1 = c_2 = 0$.

• For $a_1 \rightarrow \gamma \rho$ decay: preserve transversality of the $\omega \rightarrow \gamma$ index and may abandon transversality related to the ρ field, i.e. the choice is $c_1 = 0, c_2 \neq 0$.

• Similarly $c_1 \neq 0, c_2 = 0$ for $a_1 \rightarrow \gamma \omega$ decay.

Correspondence with bibliography, examples:

 $c_1 = c_2 = 0$

• Volkov (Annals Phys '84): The three-derivative part alone was used to estimate widths $\Gamma(a_1 \rightarrow \gamma \rho) = 34 \text{ keV}$ and $\Gamma(a_1 \rightarrow \gamma \omega) = 300 \text{ keV}$.

 $c_1=c_2
eq 0$,

• Kaiser, Meissner (NPA '90): Conservation of the axial-vector current in the AVV-triangle \rightarrow the contribution of the diagram (b) vanishes due an accidental antisymmetry under the exchange of fields $\omega_{\mu} \leftrightarrow \rho_{\mu}^{0}$.

Summary: Use the hadron vertex $a_1\omega\rho$ in the form (5), where parameters c_1, c_2 should be subsequently specified.

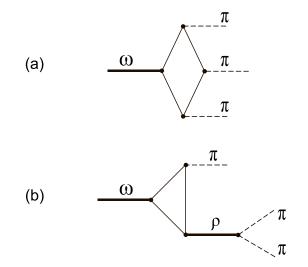
.

There is no a priori physical process associated with these three particles from which one could extract the values of c_1 and c_2 .

Fix c_1 , c_2 on theoretical or/and phenomenological grounds when (5) is an element of the Feynman diagram corresponding to a real physical process.

Jackiw (IJMP B, '00): "When radiative corrections are finite but undetermined"; our works on *Implicit Regularization*, e.g. Baeta-Scarpelli, Sampaio, Hiller, Nemes, PRD '00; - Batista, Hiller, Cherchiglia, Sampaio, PRD '18 How does this work for the $\omega \rightarrow 3\pi$ amplitude?

.



(a) and (b) representative of full set of possible diagrams without and with 1, 2, and 3 πa_1 -mixing effects on the pion line $a_1 + a_2 + a_3 = a_3$

$$A_{\omega\to3\pi} = -\frac{N_c g_{\rho}}{4\pi^2 f_{\pi}^3} \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(q) p_0^{\nu} p_+^{\alpha} p_-^{\beta} F_{\omega\to3\pi}, \quad (6)$$

 p_0, p_+, p_- : pion momenta; $\epsilon^\mu(q)$: ω polarization; In color: new. $m{a}=rac{m_
ho^2}{g_
ho^2 f_\pi^2}$

$$F_{\omega \to 3\pi} = \left(1 - \frac{3}{a} + \frac{3}{2a^2} + \frac{1}{8a^3}\right) + \left(1 - \frac{c}{2a}\right) \sum_{k=0,+,-} \frac{g_\rho^2 f_\pi^2}{m_\rho^2 - (q - p_k)^2}.$$
 (7)

1st parentheses: box diagrams with 0, 1, 2, and 3 πa_1 -transitions.

Last term: ρ -exchange graphs, where $c = c_1 - c_2$ controls the magnitude of an arbitrary local part of the AVV-quark-triangle.

Low-energy limit in (7),

$$\sum_{k=0,+,-} \frac{g_{\rho}^{2} f_{\pi}^{2}}{m_{\rho}^{2} - (q - p_{k})^{2}} \rightarrow \frac{3}{a}$$
• Full cancellation at order $1/a$, Wakamatsu (Ann Phys '89).

• The surface term contributes at order of $1/a^2$. Without it $(c_1 = c_2)$ we reproduce the πa_1 -mixing effect found in Wakamatsu ('89) at that order. • Can one use *c* to cancel all πa_1 -mixing effects?

ightarrow c = 1 + 1/(12a)

• Not supported phenomenologically: $\Gamma(\omega \to \pi^+ \pi^0 \pi^-) = 3.2 \text{ MeV}$ too low compared to experimental value $\Gamma(\omega \to \pi^+ \pi^0 \pi^-) = 7.57 \pm 0.13 \text{ MeV}.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

• Cohen (PLB '89): The chiral WI for $\gamma \rightarrow 3\pi$ process require that the chiral triangle and the box anomaly contribute to the total amplitude with the weights

$$A_{\gamma \to 3\pi}^{tot} = \frac{3}{2} A^{AVV} - \frac{1}{2} A^{VAAA}, \qquad (8)$$

where A^{VAAA} is the point $\gamma \rightarrow \omega \rightarrow \pi \pi \pi$ amplitude and A^{AVV} is the amplitude for the $\gamma \rightarrow \omega \rightarrow \pi \rho \rightarrow \pi \pi \pi$ process.

• This result is consistent both with the WIs and the KSFR relation, which arises in NJL at a = 2.

That's what one obtains from eq. (7) if:

1- one neglects the terms of order $1/a^2$ and higher in the box contribution

2- puts c = 0 in the ρ -exchange term.

• If *c* is chosen to cancel πa_1 -mixing effects, these amplitudes contribute with a relative weight of -7/64 and 71/64, respectively.

• Observation I: the surface term c cannot be used to resolve the πa_1 -mixing puzzle. Its value is unambiguously fixed by the chiral WI, which require that c = 0.

• Observation II: This pattern has been considered in Schechter (PRD '84), Kaiser (NPA '90), Wakamatsu (Ann Phys '89), and reproduces well the phenomenological value of the width.

• Observation III: If VMD is a valid theoretical hypothesis, $\gamma \rightarrow \omega \rightarrow 3\pi$ contains contributions from πa_1 -mixing which violate the LET (1)

$$A_{\gamma \to 3\pi} = -F^{3\pi} e_{\mu\nu\alpha\beta} \epsilon^{\mu}(q) p_0^{\nu} p_+^{\alpha} p_-^{\beta}, \qquad (9)$$

$$F^{3\pi} = \frac{N_c e}{12\pi^2 f_{\pi}^3} \left(1 + \frac{3}{2a^2} + \frac{1}{8a^3} \right) \neq \frac{N_c e}{12\pi^2 f_{\pi}^3}.$$
 (10)

In the following we will show that it is possible to combine the phenomenologically successful value c = 0 with a full cancellation of πa_1 -mixing effects within the NJL approach.

The πa_1 -mixing and $\gamma \rightarrow 3\pi$ amplitude

• Recall: the πa_1 diagonalization is usually performed by a linearized transformation of the axial vector field.

$$a_{\mu}
ightarrow a_{\mu} + rac{\partial_{\mu}\pi}{ag_{
ho}f_{\pi}},$$
 (11)

where $\pi = \tau_i \pi^i$, $a_\mu = \tau_i a^i_\mu$ and τ_i are the SU(2)Pauli matrices.

• This replacement that has been used in the calculations above.

• Osipov (JTEP '18), Osipov, Kahlifa (PRD '18):

• The gauge noncovariant replacement (11) violates gauge symmetry, e.g. the anomalous low energy amplitude $a_1 \rightarrow \gamma \pi^+ \pi^-$ decay is not transverse.

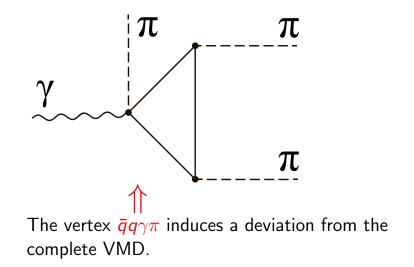
• Gauge symmetry of the $a_1 \rightarrow \gamma \pi^+ \pi^-$ amplitude can be restored if one uses the covariant derivative $D_\mu \pi$

$$a_{\mu}
ightarrow a_{\mu} + rac{\mathcal{D}_{\mu}\pi}{ag_{
ho}f_{\pi}}, \quad \mathcal{D}_{\mu}\pi = \partial_{\mu}\pi - ieA_{\mu}[Q,\pi]. ~(12)$$

- Osipov, Hiller, Zhang (PRD '18, MPLA'19):
- Generalization of $\mathcal{D}_{\mu}\pi$ to electroweak sector
- Gauge covariant derivative is important for processes with breaking of the intrinsic parity $\sim \epsilon_{\mu\nu\alpha\beta}$
- It does not affect current-algebra theorems related to the non-anomalous part of the action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Osipov, Khalifa, Hiller (PRD '20):
- $\mathcal{D}_{\mu}\pi$ contributes with additional diagram to $A_{\gamma \to 3\pi}$ (with 3 πa_1 -transitions):



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

It is an anomalous AAA amplitude to $\gamma
ightarrow 3\pi$

.

Shift ambiguity of formal linear divergence of integral \longrightarrow undetermined 4-vector v_{ρ} ,

$$A = -\frac{N_c e}{4\pi^2 f_\pi^3} \epsilon_{\mu\nu\sigma\rho} \epsilon^\mu(q) p_0^\nu(p_+ + p_-)^\sigma \left(\frac{v^\rho}{4a^3}\right) \quad (13)$$

うしん 同一人用 イモットモット 白マ

Parametrize $v_{\mu} = b_1 q_{\mu} + \frac{b_2}{(p_+ - p_-)_{\mu}} + b_3 (p_+ + p_-)_{\mu}$

where only term $\sim b_2$ survives in A and yields an extra contribution to $F^{3\pi}$

 b_2 is dimensionless and as yet undetermined. Fix it using LET (1), requiring that the unwanted terms $(\sim 1/a^2, \sim 1/a^3)$ in (10) vanish

$$b_2 = a + \frac{1}{12} = 1.92.$$
 (14)

Conclusions

The solution to the breaking of low energy theorem (LET) by πa_1 mixing terms in NJL proceeds via:

- Gauge covariant diagonalization of the mixing
- \rightarrow New vertex $\gamma \pi \bar{q}q$, beyound VMD.
- It contributes in an AAA triangle diagram as pure surface term (ST).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Careful analysis of all ST shows that this ST is the crucial element needed to restore the LET.

Acknowledgements:

Financial support from FCT through the grant CERN/FIS-COM/0035/2019

and

.

Networking support by the COST Action CA16201, PARTICLEFACE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

backup slides

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

The Model: Chiral U(2)xU(2) NJL

 $L = \overline{q} \left(i \gamma^{\mu} D_{\mu} - \hat{m} \right) q + L_{s} + L_{V} + L_{EW}$ $D_{\mu} = \partial_{\mu} - ie Q A_{\mu} - \frac{ig Z_{\mu}}{\cos \theta_{W}} (T_{3} P_{L} - Q \sin^{2} \theta_{W}) - ig P_{L} (T_{*} W_{\mu}^{*} + T_{-} W_{\mu}^{-})$ $L_{s} = \frac{G_{s}}{2} [(\overline{q} \tau_{a} q)^{2} + (\overline{q} i \gamma_{5} \tau_{a} q)^{2}]$ $L_{V} = -\frac{G_{V}}{2} [(\overline{q} \gamma_{\mu} \tau_{a} q)^{2} + (\overline{q} \gamma_{\mu} \gamma_{5} \tau_{a} q)^{2}]$

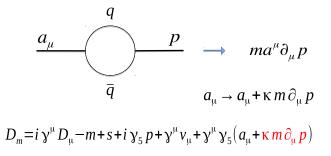
Chiral U(2)xU(2) and Gauge SU(2)xU(1) Transformations of Quark Fields

$$\delta_c q = i (\alpha_c + \gamma_5 \beta_c) q$$
$$\alpha_c = \frac{1}{2} \alpha_c^a \tau_a, \quad \beta_c = \frac{1}{2} \beta_c^a \tau_a$$

$$\begin{split} &\delta_g q_R = i e \, \alpha_g Q \, q_R \\ &\delta_g q_L = i \left(\omega_g + e \, \alpha_g Y_L \right) q_L \\ &\alpha_g = \alpha_g(x) \qquad \omega_g = \frac{1}{2} \vec{\omega}_g(x) \vec{\tau} \end{split}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

The Essence of the Problem



This breaks the gauge symmetry in the presence of electroweak interactions and changes chiral transformations of spin-1 fields .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Chiral-Covariant Form of the pi-a1 Diagonalization

$$a_{\mu} \rightarrow a_{\mu} + \frac{\kappa}{2} (\{p, \partial_{\mu} \overline{s}\} - \{\overline{s}, \partial_{\mu} p\})$$
$$v_{\mu} \rightarrow v_{\mu} + i \frac{\kappa}{2} ([p, \partial_{\mu} p] + [\overline{s}, \partial_{\mu} \overline{s}])$$

$$\delta_c a_{\mu} = i[\alpha_c, a_{\mu}] + i[\beta_c, \nu_{\mu}]$$

$$\delta_c \nu_{\mu} = i[\alpha_c, \nu_{\mu}] + i[\beta_c, a_{\mu}]$$

A.A. Osipov, B. Hiller, Phys. Rev. D62, 114013 (2000).
 A.A. Osipov, M. Sampaio, B. Hiller, Nucl. Phys. A703, 378 (2002).

Gauge-Covariant Form of the pi-a1 Diagonalization

$$a_{\mu} \rightarrow a_{\mu} + \frac{\kappa}{2} (\{p, D_{\mu}\overline{s}\} - \{\overline{s}, D_{\mu}p\}) \equiv a_{\mu} + \frac{\kappa}{2} Y_{\mu}$$
$$v_{\mu} \rightarrow v_{\mu} + i \frac{\kappa}{2} ([p, D_{\mu}p] + [\overline{s}, D_{\mu}\overline{s}]) \equiv v_{\mu} + \frac{\kappa}{2} X_{\mu}$$

$$\begin{split} D_{\mu}p = \partial_{\mu}p - i[N_{\mu}, p] - [K_{\mu}, \overline{s}] & \qquad \delta_{g}D_{\mu}p = i[\theta_{g}, D_{\mu}p] - [\beta_{g}, D_{\mu}\overline{s}] \\ D_{\mu}\overline{s} = \partial_{\mu}\overline{s} - i[N_{\mu}, \overline{s}] + [K_{\mu}, p] & \qquad \delta_{g}D_{\mu}\overline{s} = i[\theta_{g}, D_{\mu}\overline{s}] + [\beta_{g}, D_{\mu}p] \\ N_{\mu} = \frac{1}{2}(g\overline{A}_{\mu} + g'B_{\mu}T_{3}) & \qquad \theta_{g} \equiv \frac{1}{2}(\omega_{g} + e\alpha_{g}T_{3}) \\ K_{\mu} = \frac{1}{2}(g\overline{A}_{\mu} - g'B_{\mu}T_{3}) & \qquad \beta_{g} \equiv -\frac{1}{2}(\omega_{g} - e\alpha_{g}T_{3}) \end{split}$$

[1] A.A. Osipov, B. Hiller, P.M. Zhang, Phys. Rev. D98, 113007 (2018).

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

Hidden Symmetries of the Non-Anomalous Part of the Effective Action

The real part of the mesonic effective action is not affected by the covariant form of the pi-a1 diagonalization. It follows from the Chisholm's theorem and an existence of the hidden symmetry under the gauge and chiral transformations

$$\delta_g a_{\mu} = i[\theta_g, a_{\mu}] + i[\beta_g, v_{\mu}] - i \kappa m[\partial_{\mu}\theta_g, p] + \kappa m \partial_{\mu}[\beta_g, \overline{s}]$$

$$\delta_g v_{\mu} = i[\theta_g, v_{\mu}] + i[\beta_g, a_{\mu}] + i \kappa m[\beta_g, \partial_{\mu} p]$$

[1] A.A. Osipov, B. Hiller, P.M. Zhang, arXiv:1811.02991 [hep-ph] (2018).

$$\delta_c a_{\mu} = i[\alpha_c, a_{\mu}] + i[\beta_c, \nu_{\mu}] + \kappa m \{\beta_c, \partial_{\mu} \overline{s}\}$$

$$\delta_c \nu_{\mu} = i[\alpha_c, \nu_{\mu}] + i[\beta_c, a_{\mu}] + i \kappa m [\beta_c, \partial_{\mu} p]$$

[2] A.A. Osipov, M.K. Volkov, Ann. Phys. 382, 50 (2017).

It is an anomalous AAA amplitude to $\gamma
ightarrow 3\pi$

$$A = \frac{N_c e}{4a^3 f_{\pi}^3} \left\{ p_{-}^{\sigma} [J_{\mu\nu\sigma}(p_0, p_{-}) - J_{\mu\sigma\nu}(p_{-}, p_0)] + p_{+}^{\sigma} [J_{\mu\nu\sigma}(p_0, p_{+}) - J_{\mu\sigma\nu}(p_{+}, p_0)] \right\} \epsilon^{\mu}(q) p_0^{\nu}.$$
 (15)

Low energy expansion of the quark loop integral $J_{\mu\nu\sigma}$ starts from a linear term

$$J_{\mu\nu\sigma}(p_0, p_-) = \frac{1}{24\pi^2} e_{\mu\nu\sigma\rho} \left(p_0 - p_- - 3v \right)^{\rho} + \dots$$
(16)

Shift ambiguity of formal linear divergence of integral \rightarrow undetermined 4-vector v_{ρ} ,

$$A = -\frac{N_c e}{4\pi^2 f_\pi^3} \epsilon_{\mu\nu\sigma\rho} \epsilon^\mu(q) p_0^\nu(p_+ + p_-)^\sigma \left(\frac{v^\rho}{4a^3}\right) (17)$$

Parametrize $v_{\mu} = b_1 q_{\mu} + b_2 (p_+ - p_-)_{\mu} + b_3 (p_+ + p_-)_{\mu}$

where only term $\sim b_2$ survives in A and yields an extra contribution to $F^{3\pi}$

$$\Delta F^{3\pi} = \frac{N_c e}{12\pi^2 f_{\pi}^3} \left(\frac{-3b_2}{2a^3}\right), \qquad (18)$$

 b_2 is dimensionless and as yet undetermined. Fix it using LET (1), requiring that the unwanted terms $(\sim 1/a^2, \sim 1/a^3)$ in (10) vanish

$$b_2 = a + \frac{1}{12} = 1.92.$$
 (19)