

中国科学院近代物理研究所 Institute of Modern Physics, Chinese Academy of Sciences

Coupler operation and R&D activities at IMP

Tiancai Jiang SRF Group Institute of Modern Physics

Power coupler operation experience

- Overview of the power coupler for CAFe
- HV DC Biasing
- Power couplers for CiADS
 - Requirement
 - Primary Design
 - RF conditioning consideration

CAFe: Chinese ADS front-end demo superconducting linac

• Goal: to demonstrate the technology of 10 mA CW beam of superconducting front-end Linac.

Design & Built by IHEP

f (MHz)	162.5
Pf (kW)	15
Pref (kW)	8
Qe	6E5
Heat Load (W) (4.5K) 15kW	0.18
Heat Load (W) (80 K) 15kW	14.2

- Single ceramic window
- Helium cooling (OC)
- Water cooling (IC)
- Short piston
- No bias

Coupler RF Test Stand

Power Control supply system oad

Test procedure

- 1.ARC: AFT 2.Vacuum interlock: 5E-5Pa 3. T rise: < 20°
- 4. MP voltage: <1V
- **1. Travelling Wave** Duty Factor: 1%, 10%, 50%, 75%, CW Repetition: 100Hz

2. Standing Wave

Duty factor: 10%, 50%, CW Freq. 100Hz Phase shift: 10° / time Total shift: 90°

Travelling Wave: 20 kW, Standing Wave: 8 kW (phase shifter)

10 MeV operation for 2 months, ceramic windows of 4 couplers in two cryomodules were leaking.

Normal temp. Coupler condition	Cooling down	Cavity Pulse condition
4.13-4.24	4.23-5.2	5.3—5.5
CW > 10 kW		
CW condition, May-7, 2 couplers Vacuum degradation	Warm up, May 14, leak check and repair)	Pulse condition, May-20, another 2 couplers were leaking
5.6-5.11	5.12-5.15	5.9-5.24
Cavity CW >20MV/m		

10 MeV operation for 2 months, ceramic windows of 4 couplers in two cryomodules were leaking.

7

10 MeV operation for 2 months, ceramic windows of 4 couplers in two cryomodules were leaking.

emitters

Field Emission on Coupler

Cavity Ep 25MV/m Local Ep 15MV/m FE hitting on Window

Trajectory of FE

window

Field Emission on Pick-up

`•-**@**-{{

Coupler operation and R&D activities at IMP, 2019-06-25

Epeak(MV/m)

Solutions

Dual Warm Window

Braze for the windows

Arcing during the condition of the coupler.

Solve

Both of the two ways solve the problem.

HWR010 Coupler Replacement

coupler replaced in tunnel coupler assembled in clean room New couplers have worked for around 3 years, no leak was found, and the new couplers work very well.

Power Couplers for HWR015

Pros:

- Two windows more reliable
- Easy for assembling
- Reduce the size of the
 - cryomodule

Cons:

- Difficult to monitor the vacuum activity around the cold window
- Complexity and price
- Low average power

RF Design

Travelling mode (H_field)

Power transmission

S11<-35dB@162.5MHz

Travelling mode (E_field)

Thermal & MP Simulation

MP Simulation

Heat Loss	4K (W)	80K (W
static	0.1	10
20 KW (travelling)	0.5	15

o-*@*-&

Fabrication

20 kW for both travelling and standing wave modes

- > 16 IHEP couplers passed the off-line test, 13 operate online, 5 leak
- > 17 dual warm couplers passed the off-line test, 15 operate online, no leak
- > 10 TTF III like couplers passed the off-line test, 10 operate online, no leak

No obvious degradation of characteristic over 1~3 years.

Bias Structure

Bursting out of gas is avoided unless the bias unworked.

EMI on the DC Bias Power Supply

Bias Structure Improvement

Bias Cable Improvement

Contamination

Gas desorption from coupler might be a field emitter of the SC cavity.

HPP Processing

$$E_p(t_{RF}) = E_{EQM}(1 - e^{\frac{t_{RF}}{2\tau}}) = k_e \frac{2\beta}{1 + \beta} \sqrt{P_{RF} \frac{Q_{ext}}{\omega} (1 - e^{\frac{t_{RF}}{2\tau}})}$$
Pulse length ~ τ

High power short pulse processing is effective.

Overall Arrangement of CiADS

Cavity	HWR010 162.5 MHz	HWR019 162.5 MHz	Spoke042 325 MHz	Ellip062 650 MHz	Ellip082 650 MHz	Total
Quantity	9	24	40	40	24	137
₩- ₩ -₹-	Cou	pler operation a	nd R&D activitie	s at IMP, 2019-0)6-25	28

Power coupler requirements

*CiADS	162.5	325	650
Maximum Beam Current, mA	10	10	10
Maximum Operation Power (CW, any reflection), kW @10mA	28	48	130
Acceptance Testing Power (CW, any reflection), kW	40	60	160
Operating Q _L (10 ⁶) @5.5 mA	1.12/1.22	2.12	4.96/5.19
β uncertainty, %	±20	±20	±20
2K Heat Load (TW 28/48/130 kW), W	< 0.5	< 0.8	< 1.5
5K Heat Load (TW 28/48/130 kW), W	< 3	< 5	< 6
80K Heat Load (TW 28/48/130 kW), W	< 10	< 12	< 30

*CiADS : $1 \text{ mA} \rightarrow 2.5 \text{ mA} \rightarrow 5 \text{ mA} \rightarrow 10 \text{ mA}$

Upgrade Consideration

 $\beta \approx 1.6$ Beam Current is 2.4 time(1.56/0.64 = 2.4) 5% additional power

CiADS Phase I: Qe $\rightarrow 5.5$ mA

Fixed coupling, coupling error ±20%

٥-**۞**-﴿

□Clean constraint. Couplers have to allow make assembling accelerating cavities with coupler in clean room and to be installed in cryomodules then.

• The main limit of performance is field emission

Couplers should not increase noticeably the heat load of cavity.

•	HWR010	2.77W		(2742W,	cryo-plant)
•	HWR019	4.43W		(4386W,	cryo-plant)
•	DSR042	11.44W	@2K	(11326W)	, cryo-plant)
•	MB062	15.92W		(15761W	, cryo-plant)
•	HB082	16.73W		(16563W	, cryo-plant)

Cooling of the couplers has to be air-type.

 Air cooling is preferred (mandatory when possible) to water cooling in order to ease vacuum leak detection in case of failure

Having the possibility to apply HV DC biasing.

• DC biasing is an effective method to suppress multipacting.

RF Design—325MHz

Parameters	Value
Operation Frequency	325 MHz
Bandwith (S11 < -20 dB)	50 MHz
Maximum Power	60 kW
Maximum Electric Field in Air (60 kW, TW)	2.6 kV/cm
Allowed maximum Pulse Power (TW, 20 kV/cm)	3.3 MW
Average Power Density of Ceramic (60 kW, TW)	0.83 kW/cm ²
Maximum Power Density of Ceramic (60 kW, TW)	3.69 kW/cm ²

Frequency (MHz)

Parameters	
Operation Frequency	162.5 MHz
Bandwith (S11 < -20 dB)	48 MHz
Maximum Power	40 kW
Maximum Electric Field in Air (40 kW, TW)	2.7 kV/cm
Allowed maximum Pulse Power (TW, 20 kV/cm)	2.1 MW
Average Power Density of Ceramic (40 kW, TW)	0.86 kW/cm ²
Maximum Power Density of Ceramic (40 kW, TW)	3.91 kW/cm ²

162.5 MHz	2K	5K(Flow/Plant),	80K(Flow/Plant),	Total plant,	
	(Flow/Plant),W	W	W	W	
RF = OkW	0.05/49.5	0.56/117.6	5.99/95.8	262.9	Static
RF = 7kW	0.11/108.9	0.98/205.8	6.62/105.9	420.6	2.5mA
RF = 12kW	0.15/148.5	1.30/273.0	7.10/113.6	535.1	5mA
RF=28kW	0.28/277.2	2.28/478.8	8.54/136.6	892.6	10mA

325 MHz	2К	5K(Flow/Plant),	80K(Flow/Plant),	Total plant,	
	(Flow/Plant),W	W	W	W	
RF = OkW	0.06/59.4	0.58/121.8	6.02/96.3	277.5	Static
RF = 15kW	0.27/267.3	1.73/363.3	7.69/123.0	753.6	2.5mA
RF = 23kW	0.37/366.3	2.36/495.6	8.59/137.4	935.3	5 mA
RF = 48kW	0.72/712.8	4.29/900.9	11.35/181.6	1795.3	10 mA

RF Conditioning at Test Stand

- Controlled desorption of absorbed
 gases by accelerated ions and
 electrons from the RF surfaces
- TW, no power gain, field and MP is
 homogeneous, cleaning the entire RF
 surfaces
- SW, power gain is 4, field and MP is
 inhomogeneous, only the high field
 part is conditioned
- Different positions of reflection plane
- Using bias to increase MP area (KEK)

Resonant Ring

Power gain, field and MP is homogeneous.

- Complexity, high price
- Gain is limited
- High sensitivity to high power, dependence of temperature

Resonant Conditioning

Resonant Conditioning Expection

(a) MP processing from about 40 to 70 kW: top plot – vacuum in Torr; bottom plot – RF power in watt.

- Field distribution is similar to SW
- SW mode with phase shifter is efficient (BNL)
- DC biasing can be used to broad
 MP area

Resonant Structure

- Resonance can be easily achieved
- > Atmospheric part can be replaced

Vacuum Gauge

Cold Cathode Gauge

- Easily handling
- Low outgassing
- Universal interface, Ethernet

Hot Cathode Gauge

- High precision
- Small size
- High vacuum

Thanks for your attention

