WWFPC workshop 2019

High power FPC at BNL

Wencan Xu on behalf of eRHIC RF team June 22, 2019

Electron Ion Collider – eRHIC

BROOKHAVEN

Outline

I. FPC requirements for eRHIC RF systems

II. Design, fabrication and test of adjustable Qext high power FPCs

III. Summary

I. eRHIC RF systems

Hadron Ring RF systems

- Hadron will be produced by existing RHIC.
- RF systems will be reused for eRHIC.
- New system: Hadron storage, Hadron cooling ERL, crab cavity

• Electron RF Systems (All new)

- Pre-injector normal RF .
- Rapid Cycling Synchrotron (RCS) SRF.
- Electron storage ring (eSR) RF (Fundamental and third harmonic SRF).
- Crab RF system.

High power FPCs at eRHIC

systems	Cavity and FPC	FPC power	Qext	FPC option	No. of FPCs
RCS	5-cell 591 MHz cavity; 1 FPC/cavity	35 kW, pulse 20% duty cycle	6.6e6	Toshiba/SNS-type FPC (Ceramic window)	3X1
eSR Fundamental SRF system	2-cell 591 MHz; 2 FPCs/cavity	2 X 500 kW, CW	4E4 – 3E5	Fix BeO coupler, plus waveguide junction for Qext adjusting	14X2
eSR 3 rd harmonic SRF system	1-cell 1773 MHz; 2 FPCs /cavity	2 X 120 kW, CW	5.5e5 – 5.3E5	Fix FPC; no design yet	5X2
Hadron storage	5-cell 591 MHz cavity; 1FPC/cavity	61 kW, CW	1.23E6	Toshiba/SNS-type FPC (Ceramic window)	2X1
Hadron cooling ERL	5-cell 591 MHz cavity; 1 FPC/cavity	34 kW, CW	6.6e6	Toshiba/SNS-type FPC (Ceramic window)	8X1
Crab cavity	394 MHz cavity; 1 FPC /cavity	32 kW, CW	1.17e6	Toshiba/SNS-type FPC (Ceramic window)	12X1

Total couplers: 63 couplers (on table), plus Toshiba couplers for pre-injector and hadron
 ERL bunchers.

 Over 60 new couplers for eRHIC.
 Electron Ion Collider – eRHIC

FPC for 5-cell 591 MHz cavity cryomodule

- > 5-cell 591 MHz cavities are used hadron cooling ERL, hadron storage and RCS.
- Toshiba/SNS-type window is used for FPC
- The FPC window is cooled by water, and inner conductor is conductive cooling only. The maximum power is up to 70 kW CW.
- > This is not a challenge.

II. Electron storage ring RF: Why adjustable coupling?

Parameter	Unit	5 GeV (Beam-beam limit) Med Lumi High Lumi		10 GeV (Maximum lumi) Med Lumi High Lumi		18 GeV (SR Power Limited)
Peak Luminosity	10 ³⁴ cm ² s ⁻¹	0.056	0.307	0.44	1.05	0.145
# Bunches		660	1320	660	1320	330
Bunch Charge	nC	48	24	48	24	10
Bunch length	rms mm	23	23	19	19	17
Average Current	Α	2.48	2.48	2.48	2.48	0.26
Synchronous Voltage	MV/turn	1.29		3.67		38.5
Cavity voltage	MV	11.1		23.7		68.10
Sync phase	rad	3.010		2.966		2.541
Sync Rad Power	MW	3.2		9.2		10.0

Can we use fixed coupler? No! Because for a fixed coupler (β,QL), Pg directly proportional to voltage. 30 MW for 18 GeV is needed, if the same coupler for 10 GeV is used.

$$P_{g} = \frac{1+\beta}{4\beta} \frac{V_{acc}^{2}}{\frac{R_{sh}}{Q}Q_{L}} \left\{ \left(1+\frac{R_{sh}}{Q}Q_{L}\frac{I_{b}}{V_{acc}}\cos\phi_{b}\right)^{2} + \left(2Q_{L}\frac{\omega-\omega_{0}}{\omega_{0}}+\frac{R_{sh}}{Q}Q_{L}\frac{I_{b}}{V_{acc}}\sin\phi_{b}\right)^{2} \right\}$$

High power adjustable FPC for storage ring

- With two couplers, up to 1 MW (per cavity) RF power has to be coupled into 591 MHz storage ring SRF cavity, in order to compensate synchrotron radiation loss in electron beams.
- Due to wide range of operational scenarios, the Q_{ext} of the couplers has to be able to adjust by a factor of 10.
- This is a challenge. And a LDRD program is funded to demonstrate a high power coupler with Qext adjusting scheme.

To adjust the Qext

- There are two ways to adjust external Q:
 - Varying FPC's position/insertion in cavity

Z0

Ztuner=(1+S11)/(1-S11)*Z0

Zfpc

- Varying impedance seen by the cavity, through a impedance transformer
- We intend to demonstrate Qext adjusting on a 500 KW with a waveguide tuner.

1:n

ವ_L2

Zcav=R/(1+j2Qext0*df/f)

____C

$$Z_{total} = \frac{\frac{R}{Q} \cdot Q_{ext2}}{1 + j \cdot 2 \cdot Q_{ext2} \cdot \frac{\Delta f}{f}} \qquad Zin = Z_{fpc} \cdot n^2$$

$$Q_{ext2} = Z_{fpc} / Z_0 \cdot Q_{ext0} \qquad \qquad Z_{fpc} = Z_0 \frac{\frac{1 + S11}{1 - S11} - j \cdot tg(\beta l)}{1 + j \cdot \frac{1 + S11}{1 - S11} \cdot tg(\beta l)}$$

• If
$$\beta l = n\pi$$
 Then, $Q_{ext^2} = \frac{1+S11}{1-S11}Q_{ext^0}$

Electron Ion Collider - eRHIC

$$Q_{ext2} = \frac{1+S11}{1-S11}Q_{exv0}$$

Impedance match

Ztuner

[S]

Tuner

[>]Z0

To adjust the Qext

$$Z_{fpc} = Z_0 \frac{\frac{1 + S11}{1 - S11} - j \cdot tg(\beta l)}{1 + j \cdot \frac{1 + S11}{1 - S11} \cdot tg(\beta l)}$$

- It is easy to tune if phase advance ($\beta L = n\pi$), thus S11 is real
- However, we can adjust S11 (real and imaginary part) to make the imaginary part zero.

Main features of the 500 kW FPC design

More detail info: Design, simulations, and conditioning of 500 kW fundamental power couplers for a prconducting rf gun, PRSTAB 0720

Electron Ion Collider – eRHIC

705

FPC fabrication and inspection

Airside BeO window-1 inspection

Vacuum side BeO window-1 inspection

Airside BeO window-2 inspection

Vacuum side BeO window-2 inspection

BeO Raw material

Back

Front

The raw BeO window was very clean, no marks, no scratches.

Waveguide junction design

The two short plates will be tuned at the same height from 0 to 80 mm to cover the S11 range.

Waveguide junction design

Tremendous RF-thermal simulation was carried out.

We believe that 3 GPM water cooling is sufficient for water bucket. However, waveguide is only cooled with slow dry air, maybe additional fan?

Window viewport and mockup

Only 5 pixels between inne and outer conductor

FPC conditioning system setup

Status of the project

- 1. Fabricate two 500 kW fix coupler for ERL gun/booster cavity(delivered)
- 2. The impedance transformer will be reached by waveguide junction and/or stub tuners (delivered)
- 3. Refurbish FPC conditioning box and conditioning station (almost done).
- 4. Condition the FPC with 704 MHz klystron up to 500 kW, full reflection, all phases (starting in August).
- 5. Safety: ESRC review completed.

Summary

- eRHIC requires a decent amount of high power couplers, with various application conditions.
- The most challenge FPC is the adjustable coupler for electron storage ring.
- A Qext adjusting scheme with waveguide impedance tuner has been designed, simulated, and experimental test is under preparation.
- Similar scheme is able to use for other cavities and projects.

Acknowledgement (incomplete)

BNL:

Kevin Smith, Doug Holmes, Gary MacIntyre, Scott Seberg, Cliff Brutus, Alex Zaltsman, Tom Hayes, Freddy Severino, Mike Hamilton, Larry Vogt, Dave Philipps....

CPI: Steve Einarson Mega: Peter Matthew, Lisa Cummings

Electron Ion Collider – eRHIC

25

Water cooling requirement

- 16 water channels
- 36 temperature sensors, we can also use on common temperature sensor for input

RF-thermal simulation

Electron Ion Collider – eRHIC

27

Electron Ion Collider – eRHIC

28