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Goal: answer
What is integrability?
What is elliptic integrability?
Where are all the elliptic functions?



Today’s toy model

Classical M-dim many-body hamiltonian system:

H =
M∑

j=1

p2
j
2 + g

M∑

j<k
V (xj − xk), H : P → C

with
{pj , xk} = δjk canonically conjugate variables.
g coupling constant

The potentials

V (x) ∼ 1
x2 , V (x) ∼ 1

sin2 x
, V (x) ∼ 1

sinh2 x
, V (x) ∼ ℘(x)

are special and define the Calogero-Sutherland-Moser models.
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Classical integrability

The classical CSM-models are Liouville integrable, i.e.
there exist M integrals of motion I1 = H, I2, . . . , IM such that

the gradients dIj are linearly independent
{Ij , Ik} = 0, i.e. they are in involution

the flows of the Ij are complete
This means

the flows form a regular foliation of the phase space.
the Liouville-Arnold theorem applies, implying there exist so-called
action-angle coordinates:

action: p̃j such that Ij = Ij ({pk})
angle: x̃j ∈ T or ∈ R that increase linearly under the flow of the Ik .
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Example: harmonic oscillator

Let
H = p2

2 + ω2x2

2 , with {p, x} = 1

Energy conservation yields I1 = H.

Action-angle coordinates:

p = ρ cos θ, x = ρ sin θ

Now H = ρ2/2 and θ̇ = ω.
The phase space R2 is foliated by circles of fixed radius ρ.
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Inverse scattering method

Observation: finding Ij can be hard

Solution: find instead a Lax pair, matrices L,M such that

EOM ({pj}, {xj})⇔ L̇ = [L,M]

Now it follows directly that
Ik = trLk

is conserved.

Since the trace is polynomial in eigenvalues, it follows the eigenvalues are
also conserved!
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Elliptics appear

Consider again

H =
M∑

j=1

p2
j
2 + g

M∑

j<k
V (xj − xk)

then there exists a Lax pair of M ×M-matrices

Ljk = pjδjk + (1− δjk)f (xj − xk)
Mjk = (1− δjk)h(xj − xk)− δjk

∑

n 6=j
V (xj − xn)

if
f (x)h(y)− f (y)h(x) = f (x + y)(V (y)− V (x)).

The most general meromorphic solution is V (x) ∼ ℘(x)
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Quantum case

Replacing pj → p̂j = −i~ ∂
∂xj

yields the Schrödinger operator (or simply
PDO)

H = −~2

2

M∑

j=1

∂2

∂x2
j

+ g
M∑

j<k
V (xj − xk)

What does integrability mean here?

We could ask first for M pairwise commuting PDOs I1 = H, I2, . . . , IM
for which a joint basis of eigenfunctions exists
and for a unitary operator that simultaneously diagonalises all these
PDOs (a lot of functional analysis is involved here)
but this is often too much to wish for...

We could follow the Lax route, but now Ik = trLk is complicated and
generically [H, Ik ] 6= 0.
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Elliptics again

Take

H = −~2

2

M∑

j=1

∂2

∂x2
j

+ g
M∑

j<k
V (xj − xk).

Let us suppose we want meromorphic eigenfunctions

Ψ(x) =
∏

j<k
ψ(xj − xk)

General solution: V (x) ∼ ℘(x)
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Scattering: classical

t = −∞ t =∞

x1

x2

...
xM

p−1

p−2

p−M

<
< ...

p+
1

p+
2

p+
M

L =



p−1

. . .
p−M


 L =



p+

M
. . .

p+
1


p+

M+1−j = p−j

Conclusion: scattering is nondiffractive
and asymptotic momenta are conserved
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Scattering: quantum

Remember: we have M integrals of motion Ij and the wavefunction Ψ has

IjΨ(x) = hjΨ(x)

Traditional quantum mechanical scattering: where |xj − xk | is large

Ψ ∼ eix1p1+...+ixMpM

This yields a system of (usually polynomial) equations

Ij({pk}) = hj with j = 1, . . .M

Since the Ij are symmetric in the pj , all solutions are permutations of a
single particular solution.

Bethe wave function: Ψ(x) =
∑

τ∈SM

A(τ)eip·xτ
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Yang-Baxter equation

=



Yang-Baxter equation

=

S23S13S12 = S12S13S23



Spin

So far spinless particles, but adding spin is possible:

H =
M∑

j=1

p2
j
2 + g

M∑

j<k
V (xj − xk)Sjk

with Sjk some spin function/operator.

Example:
Sjk = σj · σk , with σj Pauli matrices

Freezing: sending T → 0 (or g →∞) fixes particles, leaving internal
degrees of freedom only:

H =
M∑

j<k
V (x∗j − x∗k )Sjk .

A spin chain.
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A web of chains

H = −J
L∑

j<k
V (j − k)

(
σ

(x)
j σ

(x)
k + σ

(y)
j σ

(y)
k + σ

(z)
j σ

(z)
k

)

elliptic
sinh2κ

κ2

(
℘(z) + η2

ω

)

contact
δ|z mod L|,1

trigonometric
π2/L2

sin2(πz/L)

sinh2κ

sinh2κz

hyperbolic

δ|z|,1
1
z2 rational

κ → ∞
z ∈ R

L → ∞

κ → 0

L → ∞ L → ∞

κ → ∞
z ∈ R

κ → 0
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Haldane-Shastry



Deforming the operator

So far we have only talked about potentials V , but we can deform the
operators too.

Quantum CSM:
−i~ ∂

∂xj
→ p̂j := e−i~α ∂

∂xj

turns a PDO into a finite-difference operator. Modulo ordering these
yield the quantum Ruijsenaars-Schneider models. Very recently, sense
has been made of a further deformation

p̂j →
∑

#p̂◦ . . . p̂◦

creating a doubly-elliptic model.
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Spin chain operators

First simple: Heisenberg spin chain V (x) = δ|x |,1

Name Operator symmetry R matrix
xxx σ

(x)
j σ

(x)
j+1 + σ

(y)
j σ

(y)
j+1 + σ

(z)
j σ

(z)
j+1 sl2 rational

xxz σ
(x)
j σ

(x)
j+1 + σ

(y)
j σ

(y)
j+1 + ∆σ(z)

j σ
(z)
j+1 Uq (sl2) trigonometric

xyz σ
(x)
j σ

(x)
j+1 + Γσ(y)

j σ
(y)
j+1 + ∆σ(z)

j σ
(z)
j+1 Uτ,q (sl2) elliptic

R matrix:

Stems from the Quantum Inverse Scattering Method

Forms a building block for the hamiltonian in a fixed recipe

has characteristic analytical behaviour in an auxiliary parameter

solves the quantum Yang-Baxter equation
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that solving the spectral problem involves equations of
rational/trigonometric/elliptic type, the Bethe Ansatz Equations
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Open question: How does this structure carry over beyond the
nearest-neighbour case, i.e. other V ?
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Directions I have not explored:
Vertex models: dynamical R matrices ↔ height models/RSOS models
Algebra’s: q-Virasoro, (double-affine) Hecke algebra
Special functions: generalized β integrals, elliptic hypergeometrics,
differential Galois theory
quantum dilogarithms (from quantum Teichmüller space)

Possibilities:
XYZ correlation functions
How 6D N = (2, 0) SYM relates to XYZ?
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Inozemtsev’s elliptic spin chain [Inozemtsev, 1989]

H ∼
L∑

j<k
℘(j − k)Pjk − 1

2 k

j
L→∞
general M

1992

L <∞
general M
implicit

April 1995

solutions of
elliptic KZB

May 1995

L <∞
M = 3

1996L <∞
general M
explicit

1999 k

j
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Integrability

Status:
No R matrix, no Yang-Baxter
equation
but a quantum Lax pair L,M
[Inozemtsev, 1989]

And a proposed set of
commuting charges [Inozemtsev,1996]

But so far only [J1, J2] = 0 has
been proven [Dittrich, Inozemtsev, 2006]



Literature

Inozemtsev’s
spin-chain

N = 4 SYM

CSM-modelsThermodynamics

Integrability
Status:

No R matrix, no Yang-Baxter
equation
but a quantum Lax pair L,M
[Inozemtsev, 1989]

And a proposed set of
commuting charges [Inozemtsev,1996]

But so far only [J1, J2] = 0 has
been proven [Dittrich, Inozemtsev, 2006]



Literature

Inozemtsev’s
spin-chain

N = 4 SYM

CSM-modelsThermodynamics

Integrability
In the spectral problem of the
Dilatation operator D

spec(D) = spec(H) +O
(
κ4)

[Serban, Staudacher, 2004]
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Review of the old solution

Inozemtsev’s extended Bethe ansatz
Spectral problem:

H|Ψ〉 = ε|Ψ〉.

Coordinate basis:

|↓↓↑ . . . ↑↓ . . . ↑ . . . ↓〉 with ↑ at ~n = (n1, n2, . . . , nM)T

Wavefunction component:

〈↓↑ . . . ↓↑ . . . ↑ . . . ↓↓ |Ψ〉 = Ψ(~n)

Heisenberg xxx

ansatz : Ψ(~n) =
∑

σ∈SM

Aσ(~p )ei~p·~n

Imposing periodicity yields the Bethe
equations

Inozemtsev’s ansatz

Ψ(~n) =
∑

σ∈SM

Aσ(~n, ~p )ei~p·~n
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∑
ε1

the equations have many trivial solutions
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A new parametrisation

How definitions change everything

Old ingredients:

VIno(x) = sinh2 κ

κ2

(
℘(x) + η2

ω

)

VCSM(x) = ℘(x)

Ψ̃~̃p = eip̃·x ∑

τ∈SN

l(τ)
N∏

α

χ1

with multiplicative quasiperiods
eip̃L, eip̃ω+2πiq, q = q(~t )
ρ1(z) = ζ(z)− η1

L z

U1 with F1(z) = ρ′1 + ρ2
1 + 3η1

L

New ingredients:

VIno(x) = sinh2 κ

κ2

(
℘(x) + η2

ω

)

VCSM(x) = ℘(x) + η2
ω

Ψ̃~̃p = eip̃·x ∑

τ∈SN

l(τ)
N∏

α

χ2

with multiplicative quasiperiods
eip̃L− 2πiq/ω, eip̃ω, q = q(~t )
ρ2(z) = ζ(z)− η2

ω
z

U2 with F2(z) = ρ′2 + ρ2
2 + 3η2
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A new parametrisation

When the dust settles

Potential: VIno(x) = sinh2 κ

κ2

(
℘(x) + η2

ω

)

Wavefunction ansatz: Ψ~p =
∑

σ∈SM

Ψ̃~p (nσ)

CSM wavefunction: Ψ̃~̃p = eip̃·x ∑

τ∈SN

l(τ)
N∏

α

χ2 solves CSM model with

potential VCSM(x) = ℘(x) + η2
ω and energy ẼM =

∑

m
p2

m/2 + Ũ

Momentum:
ρ̄2
(
ωpm
2π
)

= p̃m ~p = 2π
ωL

(
~q + ω~I

)

Sum of scattering phases Bethe counting numbers



A new parametrisation

When the dust settles

Potential: VIno(x) = sinh2 κ

κ2

(
℘(x) + η2

ω

)

Wavefunction ansatz: Ψ~p =
∑

σ∈SM

Ψ̃~p (nσ)

CSM wavefunction: Ψ̃~̃p = eip̃·x ∑

τ∈SN

l(τ)
N∏

α

χ2 solves CSM model with

potential VCSM(x) = ℘(x) + η2
ω and energy ẼM =
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∑

m
p2

m/2 + Ũ
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Momentum: ρ̄2
(
ωpm
2π
)

= p̃m ~p = 2π
ωL

(
~q + ω~I

)

Extended BAE: ∀1 ≤ α ≤ N
∑

β ∈ c−1{cα−1, cα+1}
ρ2(tα − tβ) − 2

∑

β ∈ (c−1{cα}) \ {α}
ρ2(tα − tβ) = i

(
p̃c(α) − p̃c(α)+1

)

Energy:
εM =

M∑

m=1
ε1(pm) + ŨCSM
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Application

Rationalisation

Observation: the eBAE are elliptic on L̂ = (L, Lω) in every tβ.

so it can be written as a rational function of ℘̂(tβ) and ℘̂′(tβ).
Turns solving eBAE = 0 into a purely rational problem.

Periodicity of the energy:

εM(t1, . . . , tβ + L, . . . , tN) = εM(t1, . . . , tN)
εM(t1, . . . , tβ + ωL, . . . , tN) = εM(t1, . . . , tN) + # eBAEβ

So εM is elliptic on-shell!

This turns the entire spectral problem into a rational one
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Application

Example: M = 2

N = 1 and we set t1 = −γ and I = I1 + I2. Define

x̂γ := ℘̂(γ − ωI/2), ŷγ := ℘̂′(γ − ωI/2)

satisfying
Weierstraß equation : ŷ2

γ = 4x̂3
γ − g2x̂γ − g3

Constraint:

2
Lρ2(γ) = ρ̂2(γ + Iω) + ρ̂2(γ)
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of which the trivial solutions are precisely those with ŷγ = 0
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γ = 4x̂3
γ − g2x̂γ − g3

Constraint:

L−1∑

n=1

x̂0 − x̂n
x̂γ − x̂n

= 0,

Energy:
ε2 ∼ cstI + (2− 2/L)x̂γ + 2/Lρ̂2 (ωI) ŷ0
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ŷγ
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Application

Example: M = 2

N = 1 and we set t1 = −γ and I = I1 + I2. Define

x̂γ := ℘̂(γ − ωI/2), ŷγ := ℘̂′(γ − ωI/2)
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γ = 4x̂3
γ − g2x̂γ − g3

Constraint:
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match with the numerical spectrum (L ≤ 12)
Completeness



Discussion

Summary:
We found a new parametrisation of the spectral problem, such that

εM =
∑

m ε(rm) + ŨCSM, i.e. almost additive energies
the spectral problem becomes fully rational
All κ limits are much better behaved

Future directions:
True additivity
Study completeness for M > 2, at least numerically
Higher spin: does the spin chain ↔ CSM relation hold beyond
s = 1/2?
XXZ
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Discussion

Limits

elliptic
sinh2κ

κ2

(
℘(z) + η2

ω

)

contact
δ|z mod L|,1

trigonometric
π2/L2

sin2(πz/L)

sinh2κ

sinh2κz

hyperbolic

δ|z|,1
1
z2 rational

Heisenberg xxz

???

q-deformed Haldane-Shastry

κ → ∞
z ∈ R

L → ∞

κ → 0

L → ∞ L → ∞

κ → ∞
z ∈ R

κ → 0



Appendix

Constraints and energy
Extended Bethe ansatz equations

(I) ρ̄1(qm + Im ω/L) = i (p̃m − 2π Im/L)

(II)
∑

β ∈ c−1{cα−1, cα+1}
ρ1(tα − tβ) − 2

∑

β ∈ (c−1{cα}) \ {α}
ρ1(tα − tβ) = i (p̃cα

− p̃cα+1)

(III) L qm =
∑

α∈ c−1{m}
tα −

∑

α∈ c−1{m−1}
tα

Definitions

ρj(z) = ζ(z)− ηj
ωj

z

Fj(t) = ρ′j(t) + ρj(t)2 + 3ηj/ωj

L = (1, ω)

Dispersion
ε(p) ∼ −℘

(ωp
2π

)

+ ρ2

(ωp
2π

)2
+ 2η̄2/ω

Energy
εM ∼ EM + M (M − 1) η2 −M η̄2

ω

EM = ẼM + 1
2

M∑

m=1
℘̄
(
qm + Im

L ω
)

ẼM = −M (M − 1)
L η1 +

M∑

m=1

p̃2
m
2 + Ũ1

Ũj := 1
2

N∑

α=1


 ∑

β ∈ (c−1{cα−1})
Fj(tα − tβ)−

∑

β ∈ c−1{cα}
Fj(tα − tβ)
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