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Standard tools

• Integration-by-parts identities

Tkachov ’81, Chetyrkin ’81

• the method of differential equations

Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99

• Laporta algorithm and computer implementations

Laporta ’01,

REDUZE von Manteuffel, Studerus ’12,

FIRE Smirnov ’15,

KIRA Maierhöfer, Usovitsch, Uwer ’ 17



Notation

NF = NFibre: Number of master integrals,

master integrals denoted by I = (I1, ..., INF
).

NB = NBase: Number of kinematic variables,

kinematic variables denoted by x = (x1, ...,xB).

NL = NLetters: Number of letters,

differential one-forms denoted by ω = (ω1, ...,ωL).



Differential equations

System of differential equations

dI +AI = 0,

where A(ε,x) is a matrix-valued one-form

A =
NB

∑
i=1

Aidxi.

The matrix-valued one-form A satisfies the integrability condition

dA+A∧A = 0 (flat Gauß-Manin connection).

Computation of Feynman integrals reduced to solving differential equations!



Simple differential equations

The system of differential equations is particular simple, if A is of the form

A = ε
NL

∑
k=1

Ck ωk,

where

- Ck is a NF ×NF-matrix, whose entries are (rational or integer) numbers,

- the only dependence on ε is given by the explicit prefactor,

- the differential one-forms ωk have only simple poles.

Henn ’13



Iterated integrals

For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path, write for

the pull-back of ω j to the interval [0,1]

f j (λ)dλ = γ∗ω j.

The iterated integral is defined by (Chen ’77)

Iγ (ω1, ...,ωk;λ) =

λ∫

0

dλ1 f1 (λ1)

λ1∫

0

dλ2 f2 (λ2) ...

λk−1∫

0

dλk fk (λk) .

Computation of Feynman integrals reduced to transforming the system of differential

equations to a simple form!



Multiple polylogarithms

If all ωk’s are of the form

ωk = d ln pk (x) ,

where the pk’s are polynomials in the variables x, then (after factorisation of univariate

polynomials)

f j =
dλ

λ− z j

and all iterated integrals are multiple polylogarithms:

G(z1, ...,zk;λ) =

λ∫

0

dλ1

λ1− z1

λ1∫

0

dλ2

λ2− z2

...

λk−1∫

0

dλk

λk− zk



Transformations

• Change the basis of the master integrals

I′ = UI,

where U(ε,x) is a NF ×NF-matrix. The new connection matrix is

A′ = UAU−1 +UdU−1.

• Perform a coordinate transformation on the base manifold:

x′i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i, j=1

Ai

∂xi

∂x′j
dx′j.



Change of coordinates

A change of variables is already required for the one-loop two-loop

function, where one encounters (x = p2/m2)

dx√
−x(4− x)

.

Here, a change of variables in the base manifold

x = −
(1− x′)2

x′

will rationalise the square root and transform

dx√
−x(4− x)

=
dx′

x′

p

m

m



Transformations in the case of multiple polylogarithm

• Change the basis of the master integrals

I′ = UI

Systematic algorithms if U is rational in the kinematic variables:

Henn ’13; Gehrmann, von Manteuffel, Tancredi, Weihs ’14; Argeri et al. ’14; Lee ’14; Meyer ’16; Prausa ’17; Gituliar,

Magerya ’17; Lee, Pomeransky ’17;

• Perform a coordinate transformation on the base manifold:

x′i = fi (x)

Algorithms to rationalise square roots:

Becchetti, Bonciani, ’17, Besier, van Straten, S.W., ’18



Simple differential equations

A = ε
NL

∑
k=1

Ck ωk, with ωk only simple poles.

This form can be reached for many Feynman integrals evaluating to multiple

polylogarithms.

Remark: Two-loop electroweak-QCD corrections to Drell-Yan

Heller, von Manteuffel, Schabinger, ’19



Simple differential equations beyond multiple polylogarithms

Can the system of differential equations be brought into the form

A = ε
NL

∑
k=1

Ck ωk, with ωk only simple poles

for Feynman integrals not evaluating to multiple polylogarithms?

Some explicit examples:

Integral ε-form simple poles comments

equal mass sunrise yes yes NB = 1, 1 elliptic curve

unequal mass sunrise yes yes NB = 3, 1 elliptic curve

topbox yes ? NB = 2, 3 elliptic curves



Part II

One elliptic curve, one variable

(The equal mass sunrise integral)

x =
p2

m2



The elliptic curve

How to get the elliptic curve?

• From the Feynman graph polynomial:

−x1x2x3x+(x1 + x2+ x3)(x1x2+ x2x3 + x3x1) = 0

• From the maximal cut:

v2
− (u− x)(u− x+4)

(
u2+2u+1−4x

)
= 0

Baikov ’96; Lee ’10; Kosower, Larsen, ’11; Caron-Huot, Larsen, ’12; Frellesvig, Papadopoulos, ’17; Bosma, Sogaard,

Zhang, ’17; Harley, Moriello, Schabinger, ’17

The periods ψ1, ψ2 of the elliptic curve are solutions of the homogeneous differential

equation.

Adams, Bogner, S.W., ’13; Primo, Tancredi, ’16



Variables

Recall

x =
p2

m2
.

Set

τ =
ψ2

ψ1

, q = e2iπτ.

Change variable from x to τ (or q).

Bloch, Vanhove, ’13



Bases of lattices

The periods ψ1 and ψ2 generate a lattice. Any other basis as good as (ψ2,ψ1).
Convention: Normalise (ψ2,ψ1)→ (τ,1) where τ = ψ2/ψ1.

1

τ τ′

Change of basis:

(
ψ′

2

ψ′
1

)
=

(
a b

c d

)(
ψ2

ψ1

)
,

Transformation should be invertible:

(
a b

c d

)
∈ SL(2,Z) ,

In terms of τ and τ′: τ′ =
aτ+b

cτ+d



The ε-form of the differential equation for the sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or

a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression ψ1/π from the master integrals
in the sunrise sector one obtains an ε-form:

I1 = 4ε2S110 (2−2ε,x) , I2 =−ε2 π

ψ1

S111 (2−2ε,x) , I3 =
1

ε

1

2πi

d

dτ
I2 +

1

24

(
3x2

−10x−9
)ψ2

1

π2
I2.

If in addition one makes a (non-algebraic) change of variables from x to τ, one obtains

d

dτ
~I = ε A(τ)~I,

where A(τ) is an ε-independent 3×3-matrix whose entries are modular forms.



The ε-form of the differential equation for the sunrise

The matrix A(τ) is given by

A(τ) =




0 0 0

0 − f2(τ) 1
1
4

f3(τ) f4(τ) − f2(τ)


 ,

where f2, f3 and f4 are modular forms of Γ1(6) of modular weight 2, 3 and 4,

respectively.

I1, I2 and I3 are expressed as iterated integrals of modular forms to all orders in ε.

Adams, S.W., ’17, ’18



Simple poles at τ = i∞

A modular form fk(τ) is by definition holomorphic at the cusp and has a q-expansion

fk(τ) = a0+a1q+a2q2+ ..., q = exp(2πiτ)

The transformation q = exp(2πiτ) transforms the point τ = i∞ to q = 0 and we have

2πi fk(τ)dτ =
dq

q

(
a0+a1q+a2q2+ ...

)
.

Thus a modular form non-vanishing at the cusp τ = i∞ has a simple pole at q = 0.



Part III

One elliptic curve, several variables

(The unequal mass sunrise integral)

x =
p2

m2
3

, y1 =
m2

1

m2
3

, y2 =
m2

2

m2
3



Moduli spaces

Mg,n: Space of isomorphism classes of smooth (complex, algebraic) curves of genus

g with n marked points.

Recall:

real surface ⇔ complex curve

dimMg,n = 3g+n−3.



Coordinates

Genus 0: dimM0,n = n−3.

Sphere has a unique shape

Use Möbius transformation to fix zn−2 = 1, zn−1 = ∞, zn = 0

Coordinates are (z1, ...,zn−3)

Genus 1: dimM1,n = n.

One coordinate describes the shape of the torus

Use translation to fix zn = 0

Coordinates are (τ,z1, ...,zn−1)

In particular:

dimM1,1 = 1 with coordinate τ, (equal mass sunrise)

dimM1,3 = 3 with coordinates τ,z1,z2, (unequal mass sunrise).



How to find z1 and z2?

In the Feynman parameter representation there are two objects of interest:

• the domain of integration σ,

• the zero set X of the second graph polynomial.

X and σ intersect at three points:

x1

x2

x3

σ

X

Re z

Im z

τ

z1
z2



Master integrals

J4 = ε2 π

ψ1
S111,

J5 = ε

[(
m2

1+m2
2−2m2

3

)

µ2
S111 +

(
t −m2

1−3m2
2+3m2

3

)
m2

1

µ4
S211 +

(
t −3m2

1−m2
2+3m2

3

)
m2

2

µ4
S121 −

2
(
t −m2

3

)
m2

3

µ4
S112

]

+
2ε2

(3t2−2M100t +∆)µ2
×

[
7
(

m2
1 +m2

2−2m2
3

)
t2
−2

(
3m4

1+3m4
2−6m4

3+m2
1m2

3 +m2
2m2

3 −2m2
1m2

2

)
t

+
(

m2
1 +m2

2−2m2
3

)
∆
]

S111 +F54J4,

J6 = ε

[(
m2

1−m2
2

)

µ2
S111+

(
t −m2

1+m2
2−m2

3

)
m2

1

µ4
S211 −

(
t +m2

1−m2
2−m2

3

)
m2

2

µ4
S121 −

2
(
m2

1−m2
2

)
m2

3

µ4
S112

]

+
2ε2

(
m2

1−m2
2

)

(3t2−2M100t +∆)µ2

[
7t2

−2
(

3m2
1 +3m2

2−m2
3

)
t +∆

]
S111 +F64J4,

J7 =
1

ε

ψ2
1

2πiWt

d

dt
J4+

ε2

8

1

(3t2 −2M100t +∆)
2

µ4

[
9t6

−22M100t5+(50M110−M200) t4+(44M300−76M210+216M111) t3

+(−41M400+84M310−86M220−52M211) t2+2∆(−5M300 +5M210−2M111) t −∆3
] ψ1

π
S111

−
1

8
F64J6 −

1

24
F54J5+F74J4.



Technical details

The three functions F54, F64, F74, appearing in the definition of J5, J6 and J7 are given
by

F54 =
6iµ2

(3t2−2M100t +∆)ψ1

[(
m2

1−m2
2+m2

3− t
) 1

y1

dy1

dτ
+
(
−m2

1+m2
2+m2

3− t
) 1

y2

dy2

dτ

]
,

F64 =
2iµ2

(3t2−2M100t +∆)ψ1

[(
3m2

1+m2
2−m2

3−3t
) 1

y1

dy1

dτ
−

(
m2

1 +3m2
2−m2

3 −3t
) 1

y2

dy2

dτ

]
,

F74 = −
µ4

(3t2 −2M100t +∆)
2

ψ2
1

[(
3m4

1+m4
2+m4

3−2m2
2m2

3−6m2
1t +3t2

)( 1

y1

dy1

dτ

)2

−

(
3m4

1+3m4
2−m4

3+2m2
1m2

2 −2m2
1m2

3−2m2
2m2

3 −6
(

m2
1+m2

2−m2
3

)
t +3t2

)( 1

y1

dy1

dτ

)(
1

y2

dy2

dτ

)

+
(

m4
1+3m4

2+m4
3−2m2

1m2
3 −6m2

2t +3t2
)( 1

y2

dy2

dτ

)2
]
.



The differential equation for the unequal mass sunrise integral

There are 7 master integrals. After a redefinition of the basis of master integrals and a

change of coordiantes from (x,y1,y2) = (p2/m2
3,m

2
1/m2

3,m
2
2/m2

3) to (τ,z1,z2) one finds

A = ε
NL

∑
k=1

Ck ωk, with ωk only simple poles,

where ωk is either

(2π)2−k
fk (τ)

dτ

2πi
,

where fk(τ) is a modular form, or of the form

ωk (zi,τ) = (2π)2−k

[
g(k−1) (zi,τ)dzi+(k−1)g(k) (zi,τ)

dτ

2πi

]
,

where g(k)(z,τ) are functions appearing in the expansion of the Kronecker function.

Bogner, Müller-Stach, S.W., ’19



The Kronecker function

F (z,α,τ) = πθ′
1 (0,q)

θ1 (π(z+α) ,q)

θ1 (πz,q)θ1 (πα,q)
=

1

α

∞

∑
k=0

g(k) (z,τ)αk, q = eiπτ

Properties of g(k)(z,τ):

- only simple poles as a function of z

- quasi-periodic as a function of z: Periodic by 1, quasi-periodic by τ.

- almost modular: Nice modular transformation properties only spoiled by divergent

Eisenstein series E1(z,τ).

Brown, Levin, ’11,

Broedel, Duhr, Dulat, Penante, Tancredi, ’18



The differential one-forms

Occurring differential forms (z3 = 1− z1− z2):

ωk (z j,Nτ) = (2π)2−k

[
g(k−1) (z j,Nτ)dz j +N (k−1)g(k) (z j,Nτ)

dτ

2πi

]

0 ≤ k ≤ 4, 1 ≤ j ≤ 3, 1 ≤ N ≤ 2

and (with Eisenstein series e2(τ) and e4(τ))

η2 (τ) = [e2 (τ)−2e2 (2τ)]
dτ

2πi
∈ M2(Γ0(2))

η4 (τ) =
1

(2π)2
e4 (τ)

dτ

2πi
∈ M4(SL2(Z))

Remark : 0 ≤ k ≤ 4



Integration along τ = const

Elliptic polylogarithms (holomorphic version, not double periodic)

Γ̃( n1 ... nk
z1 ... zk

;z;τ) =

z∫

0

dz′ g(n1)(z′− z1,τ) Γ̃( n2 ... nk
z2 ... zk

;z′;τ)

Broedel, Duhr, Dulat, Tancredi, ’17

We have

ωk (z j,Nτ)
τ=const
−→ (2π)2−k

g(k−1) (z j,Nτ)dz j

and

g(k) (z,2τ) =
1

2

[
g(k)

( z

2
,τ
)
+g(k)

(
z

2
+

1

2
,τ

)]



Integration along z1 = const and z2 = const

Integration along τ.

In the equal mass case we have

z1 = z2 = z3 =
1

3

and the integration kernels reduce to modular forms of Γ1(6).

We recover the equal mass result in terms of iterated integrals of modular forms.



Conclusions

Computation of Feynman integrals is trivial, as soon as the system of differential

equations is transformed to

A = ε
NL

∑
k=1

Ck ωk, with ωk only simple poles.

This form can be reached for

- many Feynman integrals evaluating to multiple polylogarithms

- a few non-trivial elliptic examples

Open question: Any Feynman integral can be obtained from a system of differential

equations of this form.

A constructive proof would gives us an algorithm to compute any Feynman integral.


