## IBPs without IBPs -

Intersection theory and the vector space of Feynman integrals

Hjalte Frellesvig

Dipartimento di Fisica e Astronomia "Galileo Galilei", University of Padova.

September 20, 2019


Università DEGLI STUDI di Padova


## Introduction

## Decomposition of Feynman integrals on the maximal cut by intersection numbers

## Hjalte Frellesvig., ${ }^{\mu, 6}$ Federico Gasparotto, ${ }^{\text {a/h }}$ Stefano Laporta, ${ }^{\mu, h}$ Manoj K. Mandal, ${ }^{\text {nh }}$

 Pierpaolo Mastrolia, ${ }^{, h /}$ Luca Mattiazzith ${ }^{\text {b/ }}$ and Sebastian Mizera ${ }^{c / d}$${ }^{\text {a }}$ Dipurtimento di Fisicu e Astronomia, Universita di Padova,
Via Marzolo 8, 35135 Padona, Maly
INFN, Sezione di Padome
Via Marzolo 8, 35195 Padova, Ataly
${ }^{\text {© Perimueter Institute for Theorefioul Physics. }}$
SI Caroinne St N, Waterloo, ON N2L 2Y5, Carada
${ }^{2}$ Department of Physics \& Astronomy, University of Waterioo 2001 Unieversity Ave W, Waterioo, ON NoL sG1, Canada E-mail hjalte.frellesvigipd.infn.it, federico gasparottoapd infn it stefano.laporta@pd.infn.1t, nano jkumar mandalepd.infn.it, pierpaolo.mastroliaapd.infn.it, luca.mattiazziepd.infn.it smizeralpitp.ca

Abstract: We elaborate on the recent idea of a direct decomposition of Feynman integral onto a basis of master integrals on maximal cuts using intersection numbers. We begin by showing an application of the method to the derivation of contiguity relations for special functions, such as the Euler beta function, the Gauss ${ }_{2} F_{1}$ hypergeometric function, and the Appell $F_{1}$ function. Then, we apply the new method to decompose Feynman integrals whose maximal cuts admit 1 -form integral representations, including examples that have rom two to an arbitrary number of loops, and/or from zero to an arbitrary number of legs. Direct constructions of differential equations and dimensional recurrence relations for Feynman integrals are also discussed. We present two novel approaches to decomposition-by-intersections in cases where the maximal cuts admit a 2 -form integral representation sith a view towards the extension of the formalism to $n$-form representations. The cecomposition formulae computed through the use of intersection numbers are directly verified to agree with the ones obtained using integration-by-parts identities

Keywords: Scattering Amplitudes, Differential and Algebraic Geometry
ArXiv ePrint: 1901.11510
Vector Space of Feynman Integrals and Multivariate Intersection Numbers
Hjalte Frellesvig. ${ }^{1,2, *}$ Federico Gasparotto, ${ }^{1,2,+}$ Manoj K. Mandal ${ }^{1,2, \ddagger}$
Pierpaolo Mastrolia, ${ }^{1,2,5}$ Luca Mattiazzi, ${ }^{2.1,4}$ and Sebastian Mizera ${ }^{2,4, \ldots}$
Dipartimento di Fisioa e Astronomia, Unizerssità di Padova, Via Marzolo 8, 35131 Padona, Italy INFN, Sesione di Padona, Via Marzolo \&, 35131 Padova, Italy Department of Physics ef Astronomy, Unieressity of Waterlon, Waterlon, ON N2L SG1, Canada (Dated: July 4, 2019)
Feynman integrals obey linear relations governed by intersection mumbers, which act as scaln products between vector spaces. We present a general algorithm for constructing mulltivariate
intersection numbers relevint to Feynman integral, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive finctional equations fultilled by the latter. We apply it to the derivation of contiguity
 of a few Feynman integrals
generic multi-loop integrals.

Scattering amplitudes encode crucial information about collision phenomena in our universe, from the smallest to the largest scales. Within the perturbative fieldtheoretical approach, the evaluation of multi-loop Feynman integrals is a mandatory operation for the determiLinear relations amplitudes and related quantities. ploited to simplify the evaluation of scattering amplitudes: they can be used both for decomposing scattering amplitudes in terms of a basis of functions, referred to as master integrols (MIs), and for the evaluation of the latter. The man integrals in dimensional regularization makes use of integration-by-parts identities (IBPs) |1], which are found integpution-by-parts sdenthtes (IBPs) $[1]$, which are foumd
by solving linear systems of equations $[2]$ (see $[3,4]$ and references therein for reviews). Algebraic manipulations in these cases are very demanding, and efficient algorithms Tor solving Large-size systems of linear equations have been recently devised, by making use of fimte feld arthmett. and rational functions reconstruction $[5-7]$.
In $[8 \mid$, it was shown that intersection numbers $[9]$ of diftetental fonus can be emphoyed to define (what amomints in a given family, Using this approach, projecting any multi-loop integral onto a basis of MIs is conceptually no different from decomposing a generic vector into a basis of a vector space. Within this new approach, relations among Feynman integrals can be derived avoiding the generation of intermediate, auxiliary expressions which are needed when applying Gauss elimination, as in the tandard IBP-based approaches.
In the initial studies, $|8,10|$, this novel decomposition functions falling in the class of Lauricella functionas, well as to Feymman integrals on maximal cuts, i,te with on-shell internal lines, mostly admitting a one-fold inte-

## introduction

 construction of Feymman integral relations, mainly limwith the same number of denominators as the integral to decompose, which was achieved by means of intersection numbers for uninariate forms.In this paper, we make an important step further, and address the complete integral reduction, for the determination of all coefficients, including those associated to MIs corresponding to sub-graphs. In the current work, we discuss the one-loop massless four-point integral as a paradigmatic case, although the algorithm has been
successfully applied to several other cases at one and two-loop.
Geloop.
Gemeric Feynman integrals admit multi-fold integral epresentations. Their complete decomposition requires hational differential forms. Intersection numbers of mulivariate forms have been previously studied in [11-19]. Recently, a new recursive algorithm was introduced in [20]. In this letter, we present its refined implementation and application to Feymman integrals, which provide a major step towards large-scale applicability of our stratgy for the reduction to MIs. The results of this work ticle physics, through condensed matter and statistical mechanics, to gravitational-wave physios, while making new connections to mathematics.
integrals and differential forms
In this work, we focus on integrals of the hypergeometric type,

$$
\begin{equation*}
I=\int_{c} u(\mathbf{z}) \varphi(\mathbf{z}), \tag{1}
\end{equation*}
$$



Università
degli Studi di Padova

## Introduction



For state-of-the art two-loop scattering amplitude calculations Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

Linear relations bring this down to $\mathcal{O}(100)$ master integrals

## Introduction



For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals
Linear relations bring this down to $\mathcal{O}(100)$ master integrals
Linear relations may be derived using IBP (integration by part) identities

$$
\int \frac{\mathrm{d}^{d} k}{\pi^{d / 2}} \frac{\partial}{\partial k^{\mu}} \frac{q^{\mu} N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=0
$$

Systematic by Laporta's algorithm $\Rightarrow$ Solve a huge linear system.

## Introduction



For state-of-the art two-loop scattering amplitude calculations Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

Linear relations bring this down to $\mathcal{O}(100)$ master integrals
Linear relations may be derived using IBP (integration by part) identities

$$
\int \frac{\mathrm{d}^{d} k}{\pi^{d / 2}} \frac{\partial}{\partial k^{\mu}} \frac{q^{\mu} N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=0
$$

Systematic by Laporta's algorithm $\Rightarrow$ Solve a huge linear system.
The linear relations are often informally referred to as IBPs as well.

## Theory

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces
Not all vector spaces are inner product spaces

$$
\begin{aligned}
\langle v| & =\sum_{i}\left\langle v w_{j}\right\rangle\left(C^{-1}\right)_{j i}\left\langle v_{i}\right| \quad \text { with } \quad C_{i j}=\left\langle v_{i} w_{j}\right\rangle \\
& =\sum_{i} c_{i}\left\langle v_{i}\right|
\end{aligned}
$$

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces
Not all vector spaces are inner product spaces

$$
\begin{aligned}
\langle v| & =\sum_{i}\left\langle v w_{j}\right\rangle\left(C^{-1}\right)_{j i}\left\langle v_{i}\right| \quad \text { with } \quad C_{i j}=\left\langle v_{i} w_{j}\right\rangle \\
& =\sum_{i} c_{i}\left\langle v_{i}\right|
\end{aligned}
$$

If only there were a way to define an inner product for Feynman integrals...

## Theory

## Baikov representation

$$
I=\int \frac{\mathrm{d}^{d} k_{1}}{\pi^{d / 2}} \cdots \int \frac{\mathrm{~d}^{d} k_{L}}{\pi^{d / 2}} \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=K \int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

The $x_{i}$ are Baikov variables, $\mathcal{B}$ is the Baikov Polynomial, $\mathcal{C}=\{\mathcal{B}>0\}$.

$$
n=L(L+1) / 2+E L \quad \gamma=(d-E-L-1) / 2
$$

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

## Baikov representation

$$
I=\int \frac{\mathrm{d}^{d} k_{1}}{\pi^{d / 2}} \cdots \int \frac{\mathrm{~d}^{d} k_{L}}{\pi^{d / 2}} \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=K \int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

The $x_{i}$ are Baikov variables, $\mathcal{B}$ is the Baikov Polynomial, $\mathcal{C}=\{\mathcal{B}>0\}$.

$$
n=L(L+1) / 2+E L \quad \gamma=(d-E-L-1) / 2
$$

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

The loop-by-loop version of Baikov representation can often decrease $n$

$$
I=\tilde{K} \int_{\mathcal{C}} \mathrm{d}^{\tilde{n}} x \frac{\left(\prod_{j=1}^{2 L-1} \mathcal{B}_{j}^{\gamma_{j}}(x)\right) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

HF and C. Papadopoulos, JHEP 04 (2017) 083, [arXiv:1701.07356]

## Baikov representation

$$
I=\int \frac{\mathrm{d}^{d} k_{1}}{\pi^{d / 2}} \cdots \int \frac{\mathrm{~d}^{d} k_{L}}{\pi^{d / 2}} \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=K \int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

The $x_{i}$ are Baikov variables, $\mathcal{B}$ is the Baikov Polynomial, $\mathcal{C}=\{\mathcal{B}>0\}$.

$$
n=L(L+1) / 2+E L \quad \gamma=(d-E-L-1) / 2
$$

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

The loop-by-loop version of Baikov representation can often decrease $n$

$$
I=\tilde{K} \int_{\mathcal{C}} \mathrm{d}^{\tilde{n}} x \frac{\left(\prod_{j=1}^{2 L-1} \mathcal{B}_{j}^{\gamma_{j}}(x)\right) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

$$
\text { HF and C. Papadopoulos, JHEP } 04 \text { (2017) 083, [arXiv:1701.07356] }
$$

Baikov representation is suitable for generalized unitarity cuts
$\int \mathrm{d} x \rightarrow \oint \mathrm{~d} x$. Preserve linear relations.
J. Bosma, M. Søgaard, Y. Zhang, JHEP 08 (2017) 051, [arXiv:1704.04255]


## Theory

$$
\begin{aligned}
I & =\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \cdots x_{P}^{a_{P}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form }}
\end{aligned}
$$

$$
\begin{aligned}
I & \left.=\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi=\langle\phi| \mathcal{C}\right]_{\omega} \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form } \\
\omega & =\mathrm{d} \log (u) \text { is the twist }
\end{aligned}
$$

$\langle\phi| \mathcal{C}]_{\omega}$ is a pairing of a twisted cycle $(\mathcal{C})$ and a twisted cocycle $(\phi)$ (equivalence classes of contours and integrands respectively)
P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139 dim of the set of $\phi \mathrm{s}$, is the number of master integrals.

$$
\begin{aligned}
I & \left.=\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi=\langle\phi| \mathcal{C}\right]_{\omega} \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form } \\
\omega & =\mathrm{d} \log (u) \text { is the twist }
\end{aligned}
$$

$\langle\phi| \mathcal{C}]_{\omega}$ is a pairing of a twisted cycle $(\mathcal{C})$ and a twisted cocycle $(\phi)$ (equivalence classes of contours and integrands respectively)
P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139 dim of the set of $\phi \mathrm{s}$, is the number of master integrals.

## Lee Pomeransky criterion:

nr. of master integrals $=\mathrm{nr}$. of solutions to $\omega=0$
R. Lee and A. Pomeransky, JHEP 11 (2013) 165, [arXiv:1308.6676].

## Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle $\phi$ with a dual twisted cocycle $\xi$
Lives up to all criteria for being a scalar product.

## Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle $\phi$ with a dual twisted cocycle $\xi$
Lives up to all criteria for being a scalar product.
When there is one integration variable $z$ ( $\phi$ and $\xi$ are one-forms)

$$
\langle\phi \mid \xi\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

$\mathcal{P}$ is the set of poles of $\omega$.
$(\mathrm{d}+\omega) \psi_{p}=\phi$ can be solved with a series ansatz around $z=p$ $\psi_{p}=\sum_{i} \psi_{p}^{(i)}(z-p)^{i}$. The exact expressions are not needed for the Res.

## Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle $\phi$ with a dual twisted cocycle $\xi$
Lives up to all criteria for being a scalar product.
When there is one integration variable $z$ ( $\phi$ and $\xi$ are one-forms)

$$
\langle\phi \mid \xi\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

$\mathcal{P}$ is the set of poles of $\omega$.
$(\mathrm{d}+\omega) \psi_{p}=\phi$ can be solved with a series ansatz around $z=p$ $\psi_{p}=\sum_{i} \psi_{p}^{(i)}(z-p)^{i}$. The exact expressions are not needed for the Res.

## References:

K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann's period relations, Nagoya Math. J. 139 (1995) 67-86
K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett. 120 (2018) no. 14141602


## Theory

Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \Leftrightarrow\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

with $I=\int_{\mathcal{C}} u \phi . u$ is multivalued function,
$\phi$ is a form (rational pre-factor), $\omega=\mathrm{d} \log (u)$.

Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \Leftrightarrow\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

$$
\text { with } I=\int_{\mathcal{C}} u \phi . u \text { is multivalued function, }
$$

$$
\phi \text { is a form (rational pre-factor), } \omega=\mathrm{d} \log (u) .
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \quad \Leftrightarrow \quad\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

with $I=\int_{\mathcal{C}} u \phi . u$ is multivalued function,
$\phi$ is a form (rational pre-factor), $\omega=\mathrm{d} \log (u)$.

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

## Theory

## Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \quad \Leftrightarrow \quad\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

with $I=\int_{\mathcal{C}} u \phi . u$ is multivalued function, $\phi$ is a form (rational pre-factor), $\omega=\mathrm{d} \log (u)$.

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

## References:

P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139

HF, F. Gasparotto, S. Laporta, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Decomposition of Feynman integrals on the maximal cut by intersection numbers, JHEP 1905 (2019) 153
HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers.


## Example (double box)

Massless double box:


$$
\begin{gathered}
D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}-p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{1}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \\
D_{5}=\left(k_{2}-p_{1}-p_{2}\right)^{2}, \quad D_{6}=\left(k_{1}-p_{1}-p_{2}-p_{3}\right)^{2}, \quad D_{7}=k_{2}^{2} \\
n_{\text {std }}=L(L+1) / 2+L E=9
\end{gathered}
$$

## Example (double box)

Massless double box:


$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}-p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{1}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \\
& D_{5}=\left(k_{2}-p_{1}-p_{2}\right)^{2}, \quad D_{6}=\left(k_{1}-p_{1}-p_{2}-p_{3}\right)^{2}, \quad D_{7}=k_{2}^{2}, \quad D_{8}=\left(k_{2}-p_{1}\right)^{2}=z . \\
& n_{\text {std }}=L(L+1) / 2+L E=9 \text { but } n_{\mathrm{LBL}}=8
\end{aligned}
$$

$$
I=\int \mathrm{d}^{8} x \frac{u N(x)}{x_{1}^{a_{1}} \cdots x_{7}^{a_{1}}} \rightarrow I_{7 \times \text { xut }}=\int u_{7 \times \text { xut }} \phi \quad u_{7 \times \mathrm{cut}}=z^{d / 2-3}(z+s)^{2-d / 2}(z-t)^{d-5}
$$

## Example (double box)

Massless double box:


$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}-p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{1}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \\
& D_{5}=\left(k_{2}-p_{1}-p_{2}\right)^{2}, \quad D_{6}=\left(k_{1}-p_{1}-p_{2}-p_{3}\right)^{2}, \quad D_{7}=k_{2}^{2}, \quad D_{8}=\left(k_{2}-p_{1}\right)^{2}=z . \\
& n_{\text {std }}=L(L+1) / 2+L E=9 \text { but } n_{\mathrm{LBL}}=8
\end{aligned}
$$

$$
\begin{gathered}
I=\int \mathrm{d}^{8} x \frac{u N(x)}{x_{1}^{a_{1} \cdots x_{7}^{a_{1}}} \quad \rightarrow \quad I_{7 \times \text { cut }}=\int u_{7 \times \text { xut }} \phi \quad u_{7 \times \text { xut }}=z^{d / 2-3}(z+s)^{2-d / 2}(z-t)^{d-5}} \\
\omega=\left(\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \mathrm{d} z \quad \Rightarrow \quad \nu=2
\end{gathered}
$$

## Example (double box)

We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z
$$

## Example (double box)

## We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z,
$$

The $\xi$ basis is (almost) arbitrary. A dlog form is convenient

## Example (double box)

We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z$,
The $\xi$ basis is (almost) arbitrary. A dlog form is convenient
We need the intersection numbers

$$
\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}
$$

## Example (double box)

## We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z
$$

The $\xi$ basis is (almost) arbitrary. A dlog form is convenient
We need the intersection numbers

$$
\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}
$$

Let us calculate

$$
\begin{gathered}
\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right) \\
\omega=\left(\frac{d-\omega) \psi=\phi_{1}}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \mathrm{d} z \quad \rightarrow \quad \text { Poles of } \omega: \mathcal{P}=\{0,-s, t, \infty\} \\
\text { Let us start with } z=0
\end{gathered}
$$

## Example (double box)

$$
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1}
$$

## Example (double box)

$$
\begin{aligned}
& \phi_{1}=1 \mathrm{~d} z, \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \mathcal{P}=\{0,-s, t, \infty\},\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
&(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
& \psi_{0}=\sum_{i} c_{i} z^{i}
\end{aligned}
$$

## Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} c_{i} z^{i} \quad c_{\leq 0}=0, \quad c_{1}=\frac{2}{d-4}, \quad c_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

## Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} c_{i} z^{i} \quad c_{\leq 0}=0, \quad c_{1}=\frac{2}{d-4}, \quad c_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

$$
\text { Likewise in }-s \text { and } t: \operatorname{Res}_{z \in\{-s, t\}}\left(\psi \xi_{1}\right)=0
$$

## Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} c_{i} z^{i} \quad c_{\leq 0}=0, \quad c_{1}=\frac{2}{d-4}, \quad c_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

Likewise in $-s$ and $t: \operatorname{Res}_{z \in\{-s, t\}}\left(\psi \xi_{1}\right)=0$
For $z=\infty$ we use $y=z^{-1}$ giving $\xi_{1}=\frac{-s}{1+s y} d y$

$$
\begin{aligned}
(\mathrm{d}+\omega) \psi_{\infty}=\phi & \Rightarrow \quad\left(\partial_{y}+\frac{-1}{2 y}\left((d-6)-\frac{d-4}{1+s y}+\frac{2(d-5)}{1-t y}\right)\right) \psi_{\infty}=\frac{-1}{y^{2}} \\
\psi_{\infty}=\sum_{i} c_{i} y^{i} & c_{\leq-2}=0, \quad c_{-1}=\frac{1}{d-5}, \quad c_{0}=\frac{-((d-4) s+2(d-5) t)}{2(d-6)(d-5)}, \ldots \\
& \operatorname{Res}_{y=0}\left(\left(\frac{1}{d-5} \frac{1}{y}+\mathcal{O}\left(y^{0}\right)\right)\left(\frac{-s}{1+s y}\right)\right)=\frac{-s}{d-5}
\end{aligned}
$$

## Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} c_{i} z^{i} \quad c_{\leq 0}=0, \quad c_{1}=\frac{2}{d-4}, \quad c_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

$$
\text { Likewise in }-s \text { and } t: \operatorname{Res}_{z \in\{-s, t\}}\left(\psi \xi_{1}\right)=0
$$

$$
\text { For } z=\infty \text { we use } y=z^{-1} \quad \text { giving } \quad \xi_{1}=\frac{-s}{1+s y} d y
$$

$$
\begin{array}{cl}
(\mathrm{d}+\omega) \psi_{\infty}=\phi & \Rightarrow \quad\left(\partial_{y}+\frac{-1}{2 y}\left((d-6)-\frac{d-4}{1+s y}+\frac{2(d-5)}{1-t y}\right)\right) \psi_{\infty}=\frac{-1}{y^{2}} \\
\psi_{\infty}=\sum_{i} c_{i} y^{i} & c_{\leq-2}=0, \quad c_{-1}=\frac{1}{d-5}, \quad c_{0}=\frac{-((d-4) s+2(d-5) t)}{2(d-6)(d-5)}, \ldots \\
& \operatorname{Res}_{y=0}\left(\left(\frac{1}{d-5} \frac{1}{y}+\mathcal{O}\left(y^{0}\right)\right)\left(\frac{-s}{1+s y}\right)\right)=\frac{-s}{d-5}
\end{array}
$$

$$
\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right)=\frac{-s}{d-5}
$$

## Example (double box)

$$
\begin{gathered}
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \\
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z
\end{gathered}
$$

We needed the intersection numbers: $\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}$
Using $\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right)$ with $(\mathrm{d}+\omega) \psi_{p}=\phi$, we get

$$
\begin{array}{rlrl}
\left\langle\phi \mid \xi_{1}\right\rangle & =\frac{s\left(4(d-5) t^{2}-3(d-4)(3 d-14) s^{2}-4(d-5)(2 d-9) s t\right)}{4(d-5)(d-4)(d-3)}, \\
\left\langle\phi \mid \xi_{2}\right\rangle & =\frac{s(s+t)(3(d-4)(3 d-14) s+2(d-6)(d-5) t)}{4(d-5)(d-4)(d-3)}, \\
\left\langle\phi_{1} \mid \xi_{1}\right\rangle & =\frac{-s}{d-5}, & \left\langle\phi_{1} \mid \xi_{2}\right\rangle=\frac{s+t}{d-5}, \\
\left\langle\phi_{2} \mid \xi_{1}\right\rangle & =\frac{s((3 d-14) s+2(d-5) t)}{2(d-5)(d-4)}, & \left\langle\phi_{2} \mid \xi_{2}\right\rangle=\frac{-(3 d-14) s(s+t)}{2(d-5)(d-4)} .
\end{array}
$$

## Example (double box)

$$
\begin{gathered}
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \\
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z
\end{gathered}
$$

We needed the intersection numbers: $\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}$
Using $\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right)$ with $(\mathrm{d}+\omega) \psi_{p}=\phi$, we get

$$
\begin{array}{rlrl}
\left\langle\phi \mid \xi_{1}\right\rangle & =\frac{s\left(4(d-5) t^{2}-3(d-4)(3 d-14) s^{2}-4(d-5)(2 d-9) s t\right)}{4(d-5)(d-4)(d-3)}, \\
\left\langle\phi \mid \xi_{2}\right\rangle & =\frac{s(s+t)(3(d-4)(3 d-14) s+2(d-6)(d-5) t)}{4(d-5)(d-4)(d-3)}, \\
\left\langle\phi_{1} \mid \xi_{1}\right\rangle & =\frac{-s}{d-5}, & \left\langle\phi_{1} \mid \xi_{2}\right\rangle=\frac{s+t}{d-5}, \\
\left\langle\phi_{2} \mid \xi_{1}\right\rangle & =\frac{s((3 d-14) s+2(d-5) t)}{2(d-5)(d-4)}, & \left\langle\phi_{2} \mid \xi_{2}\right\rangle=\frac{-(3 d-14) s(s+t)}{2(d-5)(d-4)} .
\end{array}
$$

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower } \quad c_{0}=\frac{(d-4) s t}{2(d-3)}, \quad c_{1}=\frac{2 t-3(d-4) s}{2(d-3)}
$$

in agreement with FIRE

## We did $\mathcal{O}(30)$ examples in the paper

MARIE CURIE

## Further cases

## We did $\mathcal{O}(30)$ examples in the paper





## Further cases

A planar integral contributing to NLO Higgs+jet production

$$
H+j \text { "Family A": }
$$



$$
\begin{aligned}
& D_{1}=k_{2}^{2}-m_{t}^{2}, \quad D_{2}=\left(k_{2}+p_{1}\right)^{2}-m_{t}^{2}, \quad D_{3}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \quad D_{4}=\left(k_{1}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \\
& D_{5}=\left(k_{1}+p_{1}+p_{2}+p_{3}\right)^{2}-m_{t}^{2}, \quad D_{6}=k_{1}^{2}-m_{t}^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}
\end{aligned}
$$

## Further cases

A planar integral contributing to NLO Higgs+jet production
$H+j$ "Family A":


$$
\begin{gathered}
D_{1}=k_{2}^{2}-m_{t}^{2}, \quad D_{2}=\left(k_{2}+p_{1}\right)^{2}-m_{t}^{2}, \quad D_{3}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \quad D_{4}=\left(k_{1}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \\
D_{5}=\left(k_{1}+p_{1}+p_{2}+p_{3}\right)^{2}-m_{t}^{2}, \quad D_{6}=k_{1}^{2}-m_{t}^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2} ; \quad D_{8}=\left(k_{1}+p_{1}\right)^{2}-m_{t}^{2}=z \\
\\
\\
u=z^{d-5}\left(z^{2}+s z+m_{t}^{2} s\right)^{\frac{4-d}{2}}\left(\left(m_{H}^{2}-s\right)^{2} z^{2}+2\left(m_{H}^{2}-s\right) s t z+s t\left(4 m_{t}^{2}\left(m_{H}^{2}-s-t\right)+s t\right)\right)^{\frac{d-5}{2}}
\end{gathered}
$$

There are four master integrals.

## Further cases

A planar integral contributing to NLO Higgs+jet production

$$
H+j \text { "Family A": }
$$



$$
\begin{gathered}
D_{1}=k_{2}^{2}-m_{t}^{2}, \quad D_{2}=\left(k_{2}+p_{1}\right)^{2}-m_{t}^{2}, \quad D_{3}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \quad D_{4}=\left(k_{1}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \\
D_{5}=\left(k_{1}+p_{1}+p_{2}+p_{3}\right)^{2}-m_{t}^{2}, \quad D_{6}=k_{1}^{2}-m_{t}^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2} ; \quad D_{8}=\left(k_{1}+p_{1}\right)^{2}-m_{t}^{2}=z \\
\\
u=z^{d-5}\left(z^{2}+s z+m_{t}^{2} s\right)^{\frac{4-d}{2}}\left(\left(m_{H}^{2}-s\right)^{2} z^{2}+2\left(m_{H}^{2}-s\right) s t z+s t\left(4 m_{t}^{2}\left(m_{H}^{2}-s-t\right)+s t\right)\right)^{\frac{d-5}{2}}
\end{gathered}
$$

There are four master integrals.

$$
I_{1111111 ;-1}=c_{1} I_{1111111 ; 0}+c_{2} I_{1211111 ; 0}+c_{3} I_{1111211 ; 0}+c_{4} I_{1111112 ; 0}+\text { lower }
$$

The intersection procedure gives $c s$ in agreement with Kira.

## Further cases

A non-planar integral contributing to NNLO 3-jet production

First non-planar pentabox:


$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-k_{2}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \quad D_{5}=\left(k_{2}+p_{1}+p_{2}\right)^{2} \\
& D_{6}=\left(k_{2}+p_{1}+p_{2}+p_{3}\right)^{2}, \quad D_{7}=\left(k_{2}+p_{1}+p_{2}+p_{3}+p_{4}\right)^{2}, \quad D_{8}=\left(k_{2}\right)^{2} ; \quad D_{9}=\left(k_{2}+p_{1}\right)^{2}=z \\
& \quad u=\left(z\left(z+s_{12}\right)\left(s_{35} z^{2}+\left(s_{51} s_{12}+s_{12} s_{23}-s_{23} s_{34}+s_{34} s_{45}-s_{45} s_{51}\right) z-s_{51} s_{12} s_{23}\right)\right)^{\frac{d-6}{2}}
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals in agreement with the literature.

$$
I_{11111111 ;-3}=c_{0} I_{11111111 ; 0}+c_{1} I_{11111111 ;-1}+c_{2} I_{11111111 ;-2}+\text { lower }
$$

Again the intersection procedure gives $c s$ in agreement with the codes.

## Further cases

An example of apparent discrepancy:

Università degli Studi di Padova

MARIE CURIE

## Further cases

An example of apparent discrepancy:

Internally massive double-box:


$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z .
\end{aligned}
$$

## Further cases

An example of apparent discrepancy:

Internally massive double-box:


$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals, but the literature mentions four!

$$
I_{1111111 ; 0}, \quad I_{1211111 ; 0}, \quad I_{1111211 ; 0}, \quad I_{1111112 ; 0}
$$

## Further cases

An example of apparent discrepancy:

Internally massive double-box:


$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals, but the literature mentions four!

$$
I_{1111111 ; 0}, \quad I_{1211111 ; 0}, \quad I_{1111211 ; 0}, \quad I_{1111112 ; 0}
$$

There is an extra relation relating 7-propagator sectors:

$$
I_{01111111 ; 1}=\frac{1}{2} I_{1111112 ; 0}-\frac{1}{2} I_{1111211 ; 0}-\frac{d-4}{4 m^{2}} I_{1111011 ; 1}+\frac{d-4}{2 m^{2}} I_{1111110 ; 1}+\text { lower }
$$

The intersection theory knows this relation!
On the $7 \times$ cut there are three (checked numerically)

## Further cases

An example of apparent discrepancy:

Internally massive double-box:


$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals, but the literature mentions four!

$$
I_{1111111 ; 0}, \quad I_{1211111 ; 0}, \quad I_{1111211 ; 0}, \quad I_{1111112 ; 0}
$$

There is an extra relation relating 7 -propagator sectors:

$$
I_{01111111 ; 1}=\frac{1}{2} I_{1111112 ; 0}-\frac{1}{2} I_{1111211 ; 0}-\frac{d-4}{4 m^{2}} I_{1111011 ; 1}+\frac{d-4}{2 m^{2}} I_{1111110 ; 1}+\text { lower }
$$

The intersection theory knows this relation!
On the $7 \times$ cut there are three (checked numerically)
This also holds for $H+j$ fam. F


$$
(6 \rightarrow 4)
$$

## multivariate

## Does it only work for maximal cuts?

MARIE CURIE
$17 / 21$

## multivariate

## Does it only work for maximal cuts? NO!

MARIE CURIE
$17 / 21$

## Does it only work for maximal cuts? NO!

$$
I=\int_{\mathcal{C}} u \hat{\phi} \mathrm{~d}^{n} z=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

but now $\langle\phi \mid \xi\rangle$ is a multivariate intersection number
K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, [arXiv:1906.02099]

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, [arXiv:1907.02000]

## Does it only work for maximal cuts? NO!

$$
I=\int_{\mathcal{C}} u \hat{\phi} \mathrm{~d}^{n} z=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

but now $\langle\phi \mid \xi\rangle$ is a multivariate intersection number
K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, [arXiv:1906.02099]

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, [arXiv:1907.02000]

$$
\begin{gathered}
\mathbf{n}\left\langle\phi^{(\mathbf{n})} \mid \xi^{(\mathbf{n})}\right\rangle=-\sum_{p \in \mathcal{P}_{n}} \operatorname{Res}_{z_{n}=p}\left(\mathbf{n - 1}\left\langle\phi^{(\mathbf{n})} \mid h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \psi_{i}^{(n)}\right) \\
\left(\delta_{i j} \partial_{z_{n}}-\hat{\mathbf{\Omega}}_{i j}^{(n)}\right) \psi_{j}^{(n)}=\hat{\xi}_{i}^{(n)} \\
\hat{\mathbf{\Omega}}_{i j}^{(n)}=-\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}^{-1}\right)_{i k} \mathbf{n - \mathbf { 1 }}\left\langle e_{k}^{(\mathbf{n}-\mathbf{1})} \mid\left(\partial_{z_{n}}-\hat{\omega}_{n}\right) h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle \\
\xi_{i}^{(n)}=\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}^{-1}\right)_{i j} \mathbf{n - \mathbf { 1 }}\left\langle e_{j}^{(\mathbf{n}-\mathbf{1})} \mid \xi^{(\mathbf{n})}\right\rangle \\
\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}\right)_{i j} \equiv \mathbf{n - \mathbf { 1 }}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle
\end{gathered}
$$



## multivariate

We have done the full reduction of




## multivariate

We have done the full reduction of


In particular

$$
\begin{aligned}
& u(\mathbf{x})=\left(\left(s t-s x_{4}-t x_{3}\right)^{2}-2 t x_{1}\left(s\left(t+2 x_{3}-x_{2}-x_{4}\right)+t x_{3}\right)\right. \\
& \left.+s^{2} x_{2}^{2}+t^{2} x_{1}^{2}-2 s x_{2}\left(t\left(s-x_{3}\right)+x_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
\end{aligned}
$$

Applying regulators to uncut propagators $u \rightarrow u \prod_{i} x_{i}^{\rho_{i}}$ gives $\nu=3$

## multivariate

We have done the full reduction of


In particular

$$
\begin{aligned}
& u(\mathbf{x})=\left(\left(s t-s x_{4}-t x_{3}\right)^{2}-2 t x_{1}\left(s\left(t+2 x_{3}-x_{2}-x_{4}\right)+t x_{3}\right)\right. \\
& \left.+s^{2} x_{2}^{2}+t^{2} x_{1}^{2}-2 s x_{2}\left(t\left(s-x_{3}\right)+x_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
\end{aligned}
$$

Applying regulators to uncut propagators $u \rightarrow u \prod_{i} x_{i}^{\rho_{i}}$ gives $\nu=3$

$$
\begin{gathered}
\hat{\phi}=\left(x_{1}^{2} x_{2}^{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{1}=\left(x_{1} x_{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{2}=\left(x_{1} x_{3}\right)^{-1} \quad \hat{\phi}_{3}=\left(x_{2} x_{4}\right)^{-1} \\
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
\end{gathered}
$$

## multivariate

We have done the full reduction of


In particular

$$
\begin{aligned}
& u(\mathbf{x})=\left(\left(s t-s x_{4}-t x_{3}\right)^{2}-2 t x_{1}\left(s\left(t+2 x_{3}-x_{2}-x_{4}\right)+t x_{3}\right)\right. \\
& \left.+s^{2} x_{2}^{2}+t^{2} x_{1}^{2}-2 s x_{2}\left(t\left(s-x_{3}\right)+x_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
\end{aligned}
$$

Applying regulators to uncut propagators $u \rightarrow u \prod_{i} x_{i}^{\rho_{i}}$ gives $\nu=3$

$$
\begin{gathered}
\hat{\phi}=\left(x_{1}^{2} x_{2}^{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{1}=\left(x_{1} x_{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{2}=\left(x_{1} x_{3}\right)^{-1} \quad \hat{\phi}_{3}=\left(x_{2} x_{4}\right)^{-1} \\
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \\
c_{1}=\frac{(d-5)(d-6)}{s t}, \quad c_{2}=\frac{-4(d-5)(d-3)}{s^{3} t}, \quad c_{3}=\frac{-4(d-5)(d-3)}{s t^{3}}
\end{gathered}
$$

in agreement with FIRE

Università degli Studi di Padova

## multivariate



The cut of the $s$-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u} u}{u x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}\right)
$$

## multivariate



The cut of the $s$-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\begin{gathered}
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u}^{u x_{1}^{2} x_{3}}}{}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}\right) \\
u_{24 \mathrm{cut}}=\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right)^{\frac{d-5}{2}} \\
\text { and now } u_{24 \mathrm{cut}} \rightarrow u_{24 \mathrm{cut}} x_{1}^{\rho_{1}} x_{3}^{\rho_{3}} \text { gives } \nu=2 .
\end{gathered}
$$



The cut of the $s$-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\begin{gathered}
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u}^{u x_{1}^{2} x_{3}}}{}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}\right) \\
u_{24 \mathrm{cut}}=\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right)^{\frac{d-5}{2}} \\
\text { and now } u_{24 \mathrm{cut}} \rightarrow u_{24 \mathrm{cut}} x_{1}^{\rho_{1}} x_{3}^{\rho_{3}} \text { gives } \nu=2 .
\end{gathered}
$$

$$
\begin{gathered}
\hat{\phi}=\frac{(d-5) s\left(x_{1}+x_{3}-s\right)}{\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right) x_{1} x_{3}}, \quad \hat{\phi}_{1}=\left(x_{1} x_{3}\right)^{-1}, \quad \hat{\phi}_{2}=1 \\
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \text { for } c_{1} \text { and } c_{2}
\end{gathered}
$$



The cut of the $s$-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\left.\begin{array}{c}
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0}{\mathrm{~d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u}^{u}}{u x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \mathrm{~d} x_{1} \mathrm{~d} x_{3}\right.
\end{array}\right), \begin{gathered}
u_{24 \mathrm{cut}}=\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right)^{\frac{d-5}{2}} \\
\text { and now } u_{24 \mathrm{cut}} \rightarrow u_{24 \mathrm{cut}} x_{1}^{\rho_{1}} x_{3}^{\rho_{3}} \text { gives } \nu=2 \\
\hat{\phi}=\frac{(d-5) s\left(x_{1}+x_{3}-s\right)}{\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right) x_{1} x_{3}}, \quad \hat{\phi}_{1}=\left(x_{1} x_{3}\right)^{-1}, \quad \hat{\phi}_{2}=1 \\
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \text { for } c_{1} \text { and } c_{2}
\end{gathered}
$$

The $\left\{x_{1}, x_{3}\right\}$-cut would yield $c_{3}$. Combine spanning cuts: The bottom-up approch.

## Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.

## Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:

Differential equations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi}
$$

Dimension shift relations:

$$
I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

## Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:
Differential equations:
Dimension shift relations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi} \quad I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

Also for contiguity relations for (generalized) hypergeometric functions

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b+2 \\
c+2
\end{array}, x\right)=C_{12} F_{1}(\underset{c}{a, b}, x)+C_{2}{ }_{2} F_{1}\left(\begin{array}{c}
a, b+1 \\
c+1
\end{array}, x\right)
$$

## Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:
Differential equations:
Dimension shift relations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi} \quad I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

Also for contiguity relations for (generalized) hypergeometric functions

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b+2 \\
c+2
\end{array}, x\right)=C_{1}{ }_{2} F_{1}(\underset{c}{a, b}, x)+C_{2}{ }_{2} F_{1}\left(\begin{array}{c}
a, b+1 \\
c+1
\end{array}, x\right)
$$

Can find integral relations without the use of IBPs.

## Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:
Differential equations:
Dimension shift relations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi} \quad I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

Also for contiguity relations for (generalized) hypergeometric functions

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b+2 \\
c+2
\end{array}, x\right)=C_{1}{ }_{2} F_{1}(\underset{c}{a, b}, x)+C_{2}{ }_{2} F_{1}\left(\begin{array}{c}
a, b+1 \\
c+1
\end{array}, x\right)
$$

Can find integral relations without the use of IBPs.

## "IBPs without IBPs"

## Perspectives

## Future work:

- Full understanding of the multivariate case


## Perspectives

## Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions
- Clarify connection to co-action
- Combine with rational reconstruction
- Optimized algorithm for sub-sectors

Università

## Perspectives

## Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions
- Clarify connection to co-action
- Combine with rational reconstruction
- Optimized algorithm for sub-sectors
- Make an extremely fast code

Università

## Perspectives

## Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions
- Clarify connection to co-action
- Combine with rational reconstruction
- Optimized algorithm for sub-sectors
- Make an extremely fast code

Thank you for the invitation to speak, and thank you for listening!


