

# Development of the Mu3e Pixel Sensor

Heiko Augustin, Physikalisches Institut, Heidelberg University



**UNIVERSITÄT** 

HEIDELBERG

ZUKUNFT

SEIT 1386

## Mu3e

Search for the LFV decay  $\mu \rightarrow eee$ in an environment of  $10^8$  -  $10^9 \mu$ -decays s<sup>-1</sup>  $(BR_{SM} < 10^{-54})$ 



## Pixel Sensor Requirements

- Pixel size  $< 100 \times 100 \,\mu \text{m}^2$
- Time resolution  $\sigma < 20 \,\mathrm{ns}$
- Material budget  $< 0.1\% X_0$ /layer
- **High rate** capability: 4 MHits/s
- $2 \times 2 \,\mathrm{cm}^2$  active pixel matrix
- Efficiency > 99% @ low noise
- Power  $< 250 \,\mathrm{mW \, cm^{-2}}$

No standard pixel detector technology can fulfill all of these requirements simultaneously  $\rightarrow$  a new technology is needed!

# HV-MAPS

High Voltage Monolithic Active Pixel Sensor



- N-well diode: charge collection via drift
- In-pixel electronics: high integration level
- Detection and readout in one chip
- $\rightarrow$  Monolithic
- Commercial HV-CMOS process

#### The MuPix8

шШ

9<mark>.</mark>5



### Setup

rows

00

 $\sim$ 



- Versatile setup and DAQ system
- Four Chip generations supported: MuPix7, MuPix8, MuPix9, ATLASPix1
- Single chip commissioning and characterisation
- Multiple stacked layers can be combined
- $\rightarrow$  Beam telescope



#### **Time Resolution**





- The first large scale prototype
- 180 nm HV-CMOS process
- Pixel size:  $81 \times 80 \,\mu m^2$
- Thinned down:  $50 \,\mu m$  to  $100 \,\mu m$
- Different substrate resistivities:  $20\,\Omega\,\mathrm{cm}$  to  $1000\,\Omega\,\mathrm{cm}$
- Timewalk correction possible:
  - Two-Threshold sampling - 6 bit Hit-ToT information
- Streaming readout @ 1.25 Gbit s<sup>-1</sup>
- Hit rate of more than 10 MHits/s possible

# MuPix10

100 140 threshold / mV

Figure 1: Efficiency of a  $200 \Omega \text{ cm}$  chip for varying reverse bias [2].

Depletion thickness:  $w \propto \sqrt{\rho} \cdot U$  $\rho$  = resistivity, U = reverse bias voltage

The collectable charge scales linearly with the depletion thickness:

 $w(200 \,\Omega \,\mathrm{cm}) @ 50 \,\mathrm{V} \simeq w(80 \,\Omega \,\mathrm{cm}) @ 100 \,\mathrm{V}$  $w(200\,\Omega\,\mathrm{cm})$  @  $5\,\mathrm{V} \simeq w(20\,\Omega\,\mathrm{cm})$  @  $50\,\mathrm{V}$ 



Figure 2: Sub-pixel study (2  $\times$  2 pixel): U = -15 V and threshold =  $50 \text{ mV} \approx 900 e$ ).

Figure 3: Timewalk: the hit delay depends on the amount of deposited energy.

Observed timewalk and on-chip delays are measured and are mathematically corrected afterwards.



Figure 4: Time resolution corrected for signal line delay and timewalk [3].

- Submission currently in preparation •  $2 \times 2 \,\mathrm{cm}^2$  active matrix
- On-chip voltage regulators and slow control infrastructure will be added
- $\rightarrow$  Ready for module production

#### References

- [1] I. Perić, "A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology", Nucl.Instrum.Meth., A582 876, 2007.
- [2] L. Huth, A High Rate Testbeam Data Acquisition System and Characterization of High Voltage Monolithic Active *Pixel Sensors*, PhD thesis, Heidelberg University, 2018.
- [3] J. Hammerich, Analog Characterization and Time Resolution of a large scale HV-MAPS Prototype, Master thesis, Heidelberg University, 2018.

At these extreme settings, the pixel is not fully depleted.

#### Summary & Conclusion

- Scaling of the technology successful
- Very good time resolution < 6.5 ns
- Large working range with high efficiency
- Change of the substrate resistivity from standard ( $20 \Omega \text{ cm}$ ) to  $80 \Omega \text{ cm}$  successful
- $\rightarrow$  Large working range with high efficiency

#### efficiency 0.95 0.85 140 160 180 80 100 120 threshold / mV

By using the timewalk and delay correction the hit times can be corrected offline. A time resolution  $< 6.5 \,\mathrm{ns}$  is achieved.