

Triplet Track Trigger for Future Hadron Collider Experiments Tamasi Kar, Physikalisches Institut, Heidelberg University

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Future Circular Collider

Figure 1: schematic map of the 100km long FCC tunnel, Image: CERN

The hadron-hadron based Future Circular Collider (FCC-hh) is a project under study with the goal to collide proton beams at $\sqrt{s} = 100 \text{ TeV}$ at a bunch crossing rate of 25 ns.

- High precision measurement of Higgs boson properties & Standard Model tests, e.g. Higgs couplings.
- Increase the discovery reach with very high energies to search for **New Physics** beyond the SM.
- Search for rare processes with high sensitivity, e.g. HH, $t\bar{t}H$, VBF.

Concept and Goal of Triplet Track Trigger (TTT)

 High pile-up (~ 1000)

Challenges

- high complexity
- DAQ and Computing
- very high data rate of $\sim 2 \, PB/s$ at $40 \, MHz$ BX

many ambiguities
limited data storage rate

Smart triggering concepts that not only allow for a significant reduction of pileup and rate, but also provide high signal acceptance and purity are needed.

- Three closely stacked detector layers
 → easy reconstruction of triplet tracks
- Layers placed at large radius (> 40 cm), beamline constraint \rightarrow **very good momentum determination**
- Highly granular pixels (CMOS monolithic)
 → precise z-vertex determination
- Pile-up suppressed **track-jets** at trigger level \rightarrow highly relevent for **multi-jet signatures**, e.g. $hh \rightarrow 4b$

Figure 2: Triplet Track Trigger (TTT) for FCC-hh central tracker placed at a radius of \sim 85 cm (shown in purple).

Triplet Track Reconstruction Algorithm

A charged particle's trajectory in a uniform magnetic field **B**.

- 1. **Triplet hit selection**: A search window in the $\Delta z \Delta \phi$ to search for triplet candidates. Hit combinatorial problem largely reduced at this stage (stacked triplet layers).
- 2. Track Reconstruction: Two independent methods used to determine the track parameters
- hits from all the three layers, l_1 , $l_2 \& l_3$. As $\frac{\sigma p_t}{p_t} \propto \frac{p_t}{B*L} \implies p_t$ is not so precise.
- hits from $l_1 \& l_3$ alone where a pseudo hit (0,0) is used as the third hit^{*a*}. Large $L \implies p_t$ is very precise.
- 3. Triplet Validation: A significant rejection of wrongly reconstructed tracks by applying a consis-

Figure 3: Transverse momentum determination of a charged particle in the transverse plane (a) and z-vertex in the longitudinal plane (b) without the beamline constraint tency check on the curvature values determined using the two methods in 2.

Very simple and fast! Can be implemented in hardware, e.g. in an FPGA, at the very first level of a trigger system

^{*a*}It is assumed that the particles originate from the beamline (0,0), called as the beamline constraint

Performance studies of the TTT for FCC-hh

Full Geant4 detector simulation

Figure 4: shows a cross-section of the castellated tracker layers

Tracking performance

- Track reconstruction efficiencies & purities
 > 90% with only three tracking layers.
- The z-vertex position of tracks (z₀) is reconstructed with sub-mm precision
 → significant pileup suppression and rate reduction.

Trigger performance

Figure 6: shows parallel jet clustering in the small z_0 regions defined along the beam axis

• All sliding window regions are considered in

with the TTT implemented in Geant4 and Figure 5 shows the hit occupancies as a function of radius in an FCC-hh like detector environment for three different pileup configurations.

- High pile-up \implies very high hit occupancies
- Full data readout considered to be possible only at radii > 40 cm (lower combinatorics)

Figure 5: Track reconstruction efficiencies and purities as a function of transverse momentum (a) and z-vertex resolution as a function of transverse momentum (b), for $hh \rightarrow 4b$, VBF physics channel in pile-up 1000.

parallel and the maximum track-jet p_t is selected. is selected.

- A significant data rate reduction is achievable at the first trigger level, see Figure 7a.
- Trigger criterion: optimum of trigger rate & efficiency.

References

- [1] M. Benedikt et al., "Future Circular Collider Study, 3: FCC-hh CDR", CERN-ACC-2018-0058 (2018)
- [2] A. Schöning, "Three-Dimensional Triplet Tracking for LHC & Future High Rate Experiments", JINST 9, C10025 (2014) [arXiv:1408.5536]

Conclusion and Outlook

- The **TTT** concept is based on a very **simple** and **fast** track reconstruction algorithm.
- Early access to the track **vertex** allows significant **pile-up and rate reduction**.
- Performance of **triplet disc** layers in the endcap is foreseen as part of future studies.
- Should be considered for tracking in **Future high rate experiments.**