

Silicon Pixel Detector R&D for CLIC

Jens Kröger, Heidelberg University & CERN

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- temperature
- two-beam acceleration scheme:
 - drive beam: high current, low energy
 main beam: low current, high energy

The Beam Telescope

silicon surface $\sim 0.84 \,\mathrm{m}^2$ single-point resolution $\sim 3\,\mu\mathrm{m}$ timing resolution $< 5\,\mathrm{ns}$ material budget $< 0.2 \% X_0 / \text{layer}$

The ATLASpix Test Chip

- designed for ATLAS ITk Upgrade, tested in view of CLIC tracker requirements
- High-Voltage Monolithic Active Pixel Sensor (HV-MAPS):
 - fully integrated readout
 - fast charge collection
 - low material budget
- commercial 180 nm HV-CMOS process: reduced cost/manufacturing complexity

• here only submatrix *ATLASpix_simple*:

readout scheme triggerless column drain

silicon surface	137 m ⁻
spatial resolution (trans.)	$7\mu{ m m}$
timing resolution	$\sim 5\mathrm{ns}$
material budget	$< 2 \% X_0$ /layer
hit detection efficiency	> 99.7 - 99.9%

Efficiency Measurements

• fully efficient (> 99.7%) at moderate bias

• can be operated at thresholds down to $\sim 500 \ e^-$ while maintaining low noise

Timing Performance

- located at CERN SPS (North Area)
- telescope performance:

track pointing resolution $\sim 1.8\,\mu\mathrm{m}$ track timing resolution $\sim 1\,\mathrm{ns}$

The Caribou Readout System

- versatile, open-source, linux-based
- fast and simple implementation of new detectors
- used for DUT readout in beam telescope Xilinx ZC706

pixels $25 \text{ columns} \times 400 \text{ rows}$ pitch $130\,\mu\mathrm{m} \times 40\,\mu\mathrm{m}$ time-of-arrival 10 bit 6 bit time-over-threshold

Spatial Resolution

- spatial resolution as expected without much charge sharing: $RMS \sim \text{pitch}/\sqrt{12}$
- slightly more charge sharing between rows (smaller pitch)
 - Track Hit Residual in x:

• determined as RMS of time residual (track-hit on DUT), at 490 e^- threshold:

> uncorrected 8.7 ns after row correction 7.1 ns after timewalk correction $6.9\,\mathrm{ns}$

Summary

Thin

with

Assemblies

arXiv:1901.07007v2

Silicon

Pixel

Sensors,

• promising results: most requirements for CLIC Tracking Detector met

• HV-CMOS \rightarrow suitable technology for Tracking Detector

• more detailed performance studies for

- different bulk resistivities
- large track incident angles
- new test chip with adapted pixel geometry to meet spatial resolution