

Development of MMC Arrays for the ECHo experiment

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Federica Mantegazzini, Kirchhoff-Institut für Physik, Heidelberg University

The ECHo experiment

The Electron Capture in Holmium (ECHo) experiment aims to determine the electron neutrino mass by the analysis of the electron capture (EC) spectrum of 163Ho.

- 1) High energy resolution
	- \rightarrow to reduce the smearing in the spectrum

• 36 detector channels (2 non-gradiometric for temperature monitoring)

Detector technology: metallic magnetic calorimeters

Monte Carlo simulations to estimate stopping power for ¹⁶³Ho electron capture photons for different absorber geometries

Detector requirements for ECHo:

Detector layout and implantation

 Lithographic microfabrication on a 380 mm thick 3'' silicon wafer

l
L

Detector optimisation and characterisation

- At working temperature of 20 mK the effect due to ¹⁶³Ho is \sim 4% for an activity of 0.9 Bq
- .
רי The 163 Ho heat capacity contribution sets the lower limit to the heat capacity for a given activity in the detector

- \rightarrow New absorber geometry for next generation ECHo design with reduced volume \rightarrow reduced heat capacity
- → Optimisation of energy resolution: $\Delta E_{\rm FWHM}$ \propto ($C_{\rm abs}$) $\sum_{k=1}^{\infty} \frac{1}{2}$ **c** $\sum_{k=1}^{\infty} \frac{1}{2}$ \rightarrow Optimisation of signal amplitude: *A* \propto *E/C*

 \rightarrow signal amplitude comparison for detectors with/without implanted 163 Ho

- Absorber thickness $= 2.5 \mu m$
	- \rightarrow minimisation of absorber heat capacity keeping high quantum efficiency

2) Fast response

 \rightarrow to minimise unresolved pile-up

3) Good linearity

 \rightarrow to achieve reliable energy calibration

Quantum efficiency studies

Background pixel (only one of two pixels of one detector is implanted with 163 Ho):

4) Radio pure materials \rightarrow to reduce background

energy deposition \mathbf{p} δE temperature change of change of magnetic flux in SQUID $\delta M = \frac{\partial M}{\partial T} \frac{\delta T}{C_{\rm tot}} \quad \delta \Phi \propto \delta M \propto \delta E$ magnetization ∂T δT $C_{\rm tot}$ change \mathfrak{t} $\delta T = \frac{\delta E}{C_{\texttt{to}}}$ $C_{\rm tot}$

- ¹⁶³Ho implantation area: 150 µm x 150 µm
- Absorbers: gold layers $(180 \mu m \times 180 \mu m \times 5 \mu m) \times 2$
- Chemically purified ¹⁶³Ho implanted

Summary and outlook

- ECHo 1st generation MMC arrays were successfully
	- produced and tested
	- \bullet implanted with $\mathrm{^{163}Ho}$ source

163Ho heat capacity contribution

• Measurement of heat capacity due to 163 Ho atoms

Parallel read-out: 4 ch. dc-SQUIDs chip x 8

Multiplexed read-out: 16 ch. MUX chip x 2

 $\overline{}$ Compact absorber geometry for highly efficient ¹⁶³Ho implantation

• Flexible read-out: parallel / multiplexing

 Optimisation studies have been performed in order to enhance energy resolution and signal amplitude quantum efficiency studies

• measurement of $163H_O$ heat capacity contribution

 A new design for next generation MMC arrays for ECHo has been developed

Next steps:

characterisation of different host materials for implantation

• characterisation of the new design at mK temperatures

• ¹⁶³Ho implantation on wafer scale

 \bullet characterisation of different 163 Ho implantation concentrations

163Ho implanted

Temperature pixel: allows for a correction of global temperature drifts

allows for in situ BG measurements

ECHo-1k detector chip: 64-pixels MMC array for implantation with 163Ho

New detector design

