

TCAD Simulation of High Voltage-Monolithic Active Pixel Sensors

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Annie Meneses G., Physikalisches Institut, Heidelberg University

HV-MAPS Technology

Figure 1: HV-MAPS Schematic (NIM A582 (2007) 876-885)

- Integrated readout electronics and sensor (low material budget)
- Use commercial CMOS process (cheaper than hybrid sensors)
- Fast charge collection via drift
- Technology for the Mu3e Pixel Tracker and a candidate for other future detector applications like LHCb, CLIC and PANDA (ATLAS)

Technology Computer-Aided Design

Use computer simulations to develop and optimize semiconductor technologies and devices

Why TCAD?

- Fabrication process and electrical behavior
- Tiny and complex structures in 2D and 3D
- Save time and money
- Complement to laboratory measurements
- Estimation and optimization of essential properties of the sensor performance (Breakdown Voltage, Charge collection time, Pixel Capacitance, ...)

Process Flow

- 1. Structure Simulation (Device structure and doping profiles)
- acker 2. Device Simulation (Physical models: mobility, recombination, avalanche)

Figure 2: MuPix8 pixel cell design

- Quasistationary (Breakdown Voltage, Capacitance, Electric Field ...)
- Transient simulation of Minimum Ionizing Particle (MIP) (Charge collection process)

Substrate Resistivity

• Electric Field and Depletion zone

Pixel Dimensions

Pixel Isolation

Why? Electron accumulation layer due to a positive charge density in Si-SiO2 interface from 10¹¹ to 10¹² cm⁻²

p-stop

p-stop

electron accumulation layer

Pixel 2

- *Figure 5: Radiation damage effect at Si-SiO2 interface* MuPix8 Interpixel Capacitance: ~ 20 fF without isolation @ -60 V, 80 Ωcm
- Breakdown

Figure 6: Isolation techniques for adjacent n-well implants (top) and electron concentration (bottom)

• Interpixel Capacitance (C₁)

Figure 9: Shallow p-well embedded in the n-well

$$\frac{C_2}{-0.251 * width + 0.5}$$

• Capacitance (C₂)

 $\frac{1}{\mu m} = 0.251 * width + 0.507$

MuPix prototypes		AtlasPix3	
MuPix7	MuPix8	*On production	30 x 12 μm²

Figure 10: Comparison of the measured delays (left scale) and the simulated charge collection times (right scale) at -40 V (NIM A902 (2018) 158-163)

1. Experiment: 4 GeV DESY II testbeam facility 2. Simulation: LET $\rightarrow 2x10^{-5} \text{ pC}/\mu\text{m}$

 $C_t = C_0 + C_1 + C_2$ $C_0 = 37.38 \text{ fF}$

 $C_0 = 07.00 \text{ H}$ $C_1 = 0.61 \text{ fF}$ $C_2 = 60.13 \text{ fF}$ $C_t = 98.12 \text{ fF}$

at -60 V, 80 Ωcm

• Total Capacitance

Figure 11: TCAD top view

Breakdown voltage

Substrate	20	80	200	1000
resistivity	Ω cm	Ω cm	Ω cm	Ω cm
Exp.	-48.0	-63.0	-60.2	-46.4
Sim.	-48.0	-59.8	-58.5	-51.4

Figure 12: 2D TCAD Simulation of pixel design • Breakdown voltage Simulation: > -120 V • Total Capacitance (at -60 V, 80 Ω cm) $C_t = 15.13$ fF + 0.64 fF + 96.44 fF = 112.17 fF

121 x 21 µn

Outlook

- Radiation damage studies in HV-MAPS with TCAD
- Use TCAD in combination with ALLPix² to predict HV-MAPS sensors behavior under test beam conditions